Can we use Baryon Acoustic Oscillation distances?

DPF-PHENO 2024

<u>Pittsburgh</u> - May 14, 2024

Stefano ANSELMI

Outline

- WHAT is the Large Scale Structure of the Universe
- WHY the Large Scale Structure
- HOW to exploit the Large Scale Structure

Relevant case:

Baryon Acoustic Oscillations (BAO)

Dark Energy probe

Meaning?

True ?

New Proposals

Basic Goals

Origin, Composition and Evolution of the Universe

Main ingredients

Baryons

...?

Radiation Dark Matter? Dark Energy?

composition, abundance and evolution?

composition, abundance, evolution

Evolution of the energy densities

BUT we observe a clumpy Universe

HOW ?

small initial perturbations

clumpy Universe

4

observed perturbations

COSMIC MICROWAVE BACKGROUND

LARGE SCALE STRUCTURE

galaxy distribution

Cosmic Microwave Background

early times

initial perturbations

anisotropies in the CMB

Large Scale Structure

Late times

Clustering of galaxies

How galaxies cluster -> depends on

the evolution of the energy densities

(Dark Energy)

Cosmic Microwave Background Large Scale Structure

Cosmic Microwave background
 Early time probe
 Measure intensity and angular positions on the sky
 <u>2D information</u> -> anisotropies

Large Scale Structure (Clustering of Galaxies)
 Late time probe -> Dark Energy domination
 Measure angular positions on the sky and redshifts
 <u>3D information</u>

From this point of view, more constraining power

observable: galaxy clustering

NATURE OF UNIVERSE ACCELERATION

- Cosmological constant?
- Dark Energy (particles?)?
- Modified Gravity?

NEUTRINOS MASS

galaxy surveys

recent/ongoing (spectroscopic) surveys

- Sloan Digital Sky Survey (SDSS) -> 10^6 galaxies DONE!
- Dark Energy Spectroscopic Instrument (DESI) -> 10⁷ galaxies
 Ongoing, first data release last month

Euclid (space mission) -> 10^7 galaxies
Ongoing, first data release in 1-2 years

How galaxy clustering?

galaxies and the matter field

Peebles, (1980) Martínez, Saar, (2001)

Observable -> position of galaxies
 We detect the visible light

0

Cosmological theory -> clustering of the matter field (baryons + Dark Matter)

how to relate observable and prediction?

historically: 1st assumption

Peebles, (1980) Martínez, Saar, (2001)

- From galaxy surveys: position of galaxies
 -> two-point galaxy correlation function
- ASSUMPTION: galaxies represent a discrete random sampling of the continuous matter density distribution

galaxy correlation function = matter correlation function

historically: 2nd assumption

Two-point correlation function <u>ASSUMPTION</u>: Accurately predicted by the linearized equations

2-point correlation function

observations

relevant information on Dark Energy... BUT...

FIT

1st assumption: broken

Kaiser (1984)

Galaxies/halos <u>DO NOT</u> populate randomly the continuous matter field.

dark matter

what we observe

2nd assumption: broken

Smith et al (2008),

Continuous matter field is affected by the <u>non-linear</u> gravitational evolution (and other non-linear physics)

0

consequence

Large Scale Structure observables

We do not know how to predict the cosmological observables in a unique way

Large Scale Structure prediction

other assumptions added

Cosm. model -> Unique galaxy 2pcf?

Relevant case:

Baryon Acoustic Oscillations (BAO)

Cosmological standard ruler

Shanks et al. (1987)

Eisenstein et al (1998)

Bassett, Hlozek (2009)

Object of known size constant in redshift.

Large Scale Structure Statistical standard ruler

Clustering of galaxies ______ PREFERRED SCALE (constant in redshift)

Observed at different redshifts

Constrain the angular diameter distance.

Cosmological parameters

Bassett and Hlozek (2009)

Early Limes...

Initial fluctuations temperature fluctuations in the CMB $(\delta T/T \sim 10^{-5})$

...Late times

100 -**I** DR9 I DR10 I DR11 I DR11 ₽ pre-recon ₽ s²{₀(s) (h⁻² Mpc²) 50 BAO 0 BOSS 50 100 150 200 $s(h^{-1}Mpc)$

Baryon acoustic oscillations in the galaxy Correlation Function

BAO evolution

initial overdensity

Eisenstein et al (2007)

BAO in galaxies

Which scale?

- Which scale in the clustering Correlation Function?
- Comoving baryon acoustic scale Baryon acoustic peak - Matter CF
 - ra is Geometrical (indep. primordial fluctuation)

0

 r_d

Sp

Eisenstein et al (2005)

24

Baryon Acoustic Oscillations (BAO)

from Baryon Acoustic Oscillations?

© Cosmology-Indep. Accurate distance measurements

GOALS

Constrain cosmological models (at the DE time)

Consistency tests (e.g. tensions)

HOW

- BAO distances combined w/ other Cosmological observations.
 Degeneracy among parameters are reduced.
- BAO distances alone (e.g. Dark Energy detection)

Late Universe Acceleration <-> Dark Energy

PROBE COMBINATION

DIFFERENT PROBES

BUT... let's take a step back...

BAO distance -> Dark Energy
Xuesd (2012)
Comoving coordinates -> fiducial cosmology assumed.
Alcock-Paczynski distortion effect
Right Cosmology Wrong Cosmology
Clustering 2pcf monopole at redshift z.
Distorted True small
correction

$$f_0^D(s^F) = f_0^T(\alpha s^F) + O(c)$$

Isotropic shift
 $\alpha = D_V(z)/D_V^F(z)$
Distorted Distance
 $D_V(z)/D_V^F(z)$

How cosmology indep?

S.A, Corasaniti, Sanchez, Starkman, Sheth, Zehavi - PRD (2019) O'Dwyer, S.A, Starkman, Corasaniti, Sheth, Zehavi - PRD (2020)

PRACTICE

BAO distances employed to constrain ANY cosm. model

IMPLICIT ASSUMPTION

BAO: Cosmology-Indep. Accurate distance measurements (Inference done without cosmolog. model assumptions)

QUESTION

At what level is this true ?
We will try to answer to this question!

Cosmological Distance: Dr

Distorted True

small

FROM $\xi_0^D(s^F) = \xi_0^T(\alpha s^F) + O(\epsilon)$

Isotropic shift MEASURED $\alpha = D_V(z)/D_V^F(z)$ in a background-independent way

But we need a 2pcf model

 $\underbrace{\xi_0^D(s^F)}_{\text{DATA}} = \underbrace{\xi_0^{\text{model}}(\alpha \ s^F)}_{\text{THEORY}} + O(\epsilon)$ IT Should not introduce $\underbrace{\text{Unwanted dependencies}}_{\text{Unwanted dependencies}}$

standard BAO

Alcock-Paczynski equation:

0

 $\xi_0^D(s^F)$

Seo et al. (2008) Xu et al. (2012)

.

DATA THEORY

Cosmological parameters are kept fixed to some <u>flat-ACDM</u> fiducial values

Because of cosm. param. fixing

$$\alpha = \frac{D_V(z)}{D_V^F(z)} \left(\frac{r_d^F}{r_d} \right)$$

prescription

 $\xi_0^{\text{model}}\left(\alpha \ s^F\right) + O(\epsilon)$

<u>ARE ERRORS ON A</u> PROPERLY ESTIMATED?

COSMOL. MODEL DEPENDENCE?

S.A, Corasaniti, Sanchez, Starkman, Sheth, Zehavi - PRD (2019)

2pcf Alcock-Paczynski equation:

THEORY

DATA

Marginalize over parameters:

- DE dependent
- spatial curvature dep.
- initial fluctuation param.
- tracer dependent (e.g. galaxies)

BAO distances

S.A, Corasaniti, Sanchez, Starkman, Sheth, Zehavi - PRD (2019)

We obtain <u>Cosmological</u> Distances that are:

- 1) Geometrical (indep. primordial fluctuation parameters)
- 2) Dark-Energy model-independent (ACDM + Quintessence)
- 3) Spatial curvature-independent
- 4) Tracer-independent (galaxy, quasars, clusters etc...)

Purely-Geometric-BAO

Excluded?

Modified gravity cosmologies ? DE-DM coupling ?

standard BAO: problems

S.A, Corasaniti, Sanchez, Starkman, Sheth, Zehavi - PRD (2019)

1) parameter fixing

2) which 2pcf model?

Cosm. model -> Unique galaxy 2pcf?

PROPER ERROR ESTIMATION ??

problem 1: parameter fixing

S.A, Corasaniti, Sanchez, Starkman, Sheth, Zehavi - PRD (2019)

all dependencies fitted/marginalized

... but problem 2: galaxy-2pcf theoretical model ??

problem 2: complementary approach

Shanks et al. (1987) Eisenstein et al (1998) Bassett, Hlozek (2009)

linear approx.

ACDM

scale independent for

 $\xi^{obs}(r,z) = b_{10}(z)^2 D(z)^2 \left(1 + \frac{2\beta}{3} + \frac{\beta^2}{5}\right) \xi_m(r,0)$

Quintessence

* no flatness assumption

A PREFERRED SCALE in the 2pcf -> Time/Model indep.
Can measure Dv in model-indep. way!!

Altacking problem 2: the Linear Point

LINEAR POINT

- LP = peak-dip middle point
- Linear at 0.5% -> red. indep.
- Geometrical

parametric fit

NO 2pcf MODEL NEEDED DATA $\xi_{0}^{D}\left(y_{LP}^{gal}(z)\right) = \xi_{0}^{lin}\begin{pmatrix}S_{LP}(\omega_{b}, \omega_{c})\\D_{V}^{T}(z)\end{pmatrix} + O(\epsilon)$ model-independent

CLASS/CAMB

S.A, Starkman, Sheth - MNRAS (2016) Parimbelli, S. A, et al - JCAP (2021)

S.A, Corasaniti, Starkman, Sheth, Zehavi - PRL (2018) S.A, Corasaniti, Starkman, Sheth, Zehavi - PRD (2018)

DISTANCES MEASURED from SDSS galaxy data!!

What do we learn about cosmology?

AIM

S.A., Starkman, Renzi - PRD (2023)

- Test cosmological model(s) with galaxy-clustering
- Data vs Theory -> Testing cosmological model(s) assumptions
- Cosm. model -> Unique galaxy 2pcf ??

2pcf MODEL

- Galaxy clustering models: add extra assumptions
- Data vs Theory -> Testing cosmological model(s) + galaxy clustering model assumptions -> Learning about Dark Energy?

LINEAR POINT

Attempt to minimize the non-cosmological assumptions
Data driven approach

Can we use BAO distances?

- O Cosm. applicability of standard BAO distances: UNCLEAR!
- Purely-Geometric-BAO: Cosmic Distance Measurements Independent of (some) cosmological background models No flat-ACDM fixed parameters!

2pcf Model-Fitting – errors propagated Standard BAO: error underest. by factor of 2. Which model?

Operatively

Linear Point Standard Ruler Model independent: 2pcf model not needed

... a lot to do...

<u>Euclid project (ongoing);</u> Combine with other observations; Observational systematics; Quadrupole information;...

THANK YOU!!