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Based on

- Phenomenology of TMD parton distributions in Drell-Yan and Z0 boson production in a 
hadron structure oriented approach

(ArXiv:2401.14266 accepted to PRD)

• (F. Aslan, M. Boglione, J. O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers, A. Simonelli )

- The resolution to the problem of consistent large transverse momentum in TMDs 
(PhysRevD.107.094029)

• (J. O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers )

- Combining nonperturbative transverse momentum dependence with TMD evolution 
(PhysRevD.106.034002)

• (J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato )

https://arxiv.org/abs/2401.14266
PhysRevD.107.094029.pdf
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.034002
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What we know

At large qT ∼ Q the cross section is determined solely by fixed order 
collinear factorization (SIDIS, Drell-Yan, e+e- --> back-to-back hadrons,…)

Collinear PDFs

Drell-Yan

At small qT << Q the cross section is determined solely by TMD 
factorization (TMD pdfs and/or TMD FFs)
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What we know

Similarly, at large TM (kT)/ small bT the TMDs are uniquely 
determined by an OPE expansion in terms of collinear PDFs/FFs

Usual PDFsPerturbatively calculable
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What we know
A picture containing text, line, diagram, font

Description automatically generated

Credits: Lorcé, Pasquini and 
Vanderhaeghen

Most of these integrals 
are divergent. 
A more careful 
treatment is necessary

https://arxiv.org/pdf/1102.4704.pdf
https://arxiv.org/pdf/1102.4704.pdf
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Integral relations are more complicated

Purely perturbative

Even for the polarized cases (Sivers, etc…)
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Conventional (pheno) approach
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Final parametrization of a TMD

Same for FF

Nonperturbative
Perturbatively 

calculable

Fixed order collinear factorization

Drop this
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Large bmax dependence
Large qT inconsistency

What is going on?
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Conventional HSO (Gaussian)

?

?

9

Matching region !!!

Conventional vs HSO - SIDIS cross section 
(not a fit)
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Matching at and after kT/Q ~ 1

Because of bmin
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(Some) Questions

• What do we mean by perturbative and nonperturbative contributions?

• How much sensitivity to collinear functions do the TMDs have?

• Can we test different models and our assumptions in a manageable 
manner?

• Can we maximize the predictive power?

• Do we have control over the theoretical/model errors?

Create a framework that facilitates the answers: 

HSO approach
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Hadron Structure Oriented approach
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TMD PDF HSO parametrization at input scale

Smooth 
Perturbative-Nonperturbative 

interpolation

No need of bmax or bmin

Integral relation/ OPE matching

(regardless of the NP model !!)
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TMD PDF HSO parametrization at input scale
Fixed order collinear factorization

NP parametersSmall kT modelSuch that

Large kT OPE coefficients

It is easily generalizable up to any orders in aS
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TMD PDF HSO parametrization at input scale

Such that

pQCD and collinear factorization information

NP model

Integral relations/OPE expansion is satisfied

No need to forcibly divide space into two parts with bmax
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Quick comparison

bmax: takes care of large logs at large bT

bmin: takes care of integral relation
 (but changes OPE expansion)

µb*(bT,bmax): takes care of RG improvement

Large logs taken care by the integral relation/OPE matching

Integral relation sastified by construction

RG improvement with a functional of bT only (no bmax)

Conventional HSO



17

Evolution?

HSO Collins-Soper kernel 
at the input scale and RG 
improvement with 
prescription. 

Match small bT/large kT 
with OPE and assign 

“core” model 
(large bT/small kT)

We need to change scheme We are working with the renormalization scale,
 NOT bT
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Phenomenology: test the HSO with Drell-Yan
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Pheno strategy:

Fit low-to-moderate Q Evolve fits to higher Q

E288, E605 Drell-Yan experiments

Two different ”core” models:
Gaussian and Spectator-like

CDFI, CDFII, D0I

Postdiction

Data at different Q not on the same footing
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Low Q fit results
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Spectator model too:

Just 4 parameters for now
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Extractions from E288
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Higher Q postdictions: 
Testing the predictive power
A postdiction of CDFI with just E288 or E605 data Just 3+1 parameters
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Higher Q postdictions: 
test different fits on the same experiment
A postdiction of D0I with just E288 or E605 data Just 3+1 parameters
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Higher Q postdictions: 
test different models on the same experiment
A postdiction of CDFII with E288 GAUSSIAN fit A postdiction of CDFII with E288 SPECTATOR fit
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Comparison with MAP22
Observations:

No tail matching for MAP

Model dependence 
washes out at large Q

Different models can describe
 the small kT region at low Q

How do we choose?



26

TMDs are affected by collinear distributions

Example: take two pdfs associated with the same flavor (s here)
 and compute the input TMD 

Expected different tails because of the OPE expansion

Maybe unexpected different small kT behavior 
because of integral relation
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Changing the integral necessarily changes the integrand

JAM: 302.01192 
“Importantly, we have checked that the differences between the 

proton and pion ⟨bT|x⟩ are completely due to the nonperturbative 
TMD structure, independent of the collinear PDFs”

BONU
HSO: Can quantify these effects concretely
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Next/Ongoing
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Sivers TMD
Not the Qiu-Sterman 
function

Similarly, just exploiting the properties of the Fourier transform and the OPE expansion:

Ongoing calculations and extension of the HSO approach to Sivers
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Summary

We have a framework that

1. Is consistent with the large kT tail from theory (where it should)

2. Satisfies an integral relation: pseudo probabilistic interpretation

3. No bmax or bmin dependence: all errors are under control 

4. NP (core) models are very easily swappable and testable

Pheno methodology: Fit low Q, test against higher Q (not mandatory)

NEXT/SOON:

Sivers, SIDIS large qT issue, more refined models, input from Lattice?, higher 
orders…
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Thank you
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Backup slides
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The NP Collins-Soper kernel
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Why is this important?
• We can quantitatively and conclusively answer the question:

 How much collinear dependence do my TMD extractions carry?

TMD
 operator Collinear operator + O(𝛼S)

TMD 
parametrization Collinear operator + O(𝛼S)
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Choose “core” models (examples)

Gaussian “core” models

Spectator-like “core” models
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