Understanding the large k_T behavior of the TMDs

Tommaso Rainaldi – Old Dominion University 2024 IWHSS-CPHI Yerevan, Armenia Sep 30 – Oct 4, 2024

Based on

Phenomenology of TMD parton distributions in Drell-Yan and Z⁰ boson production in a hadron structure oriented approach

(ArXiv:2401.14266 accepted to PRD)

• (F. Aslan, M. Boglione, J. O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers, A. Simonelli)

- The resolution to the problem of consistent large transverse momentum in TMDs (PhysRevD.107.094029)
 - (J. O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers)

- Combining nonperturbative transverse momentum dependence with TMD evolution (<u>PhysRevD.106.034002</u>)

• (J. O. Gonzalez-Hernandez, T. C. Rogers, N. Sato)

What we know

At small $q_T \ll Q$ the cross section is determined solely by TMD factorization (TMD pdfs and/or TMD FFs)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\boldsymbol{q}_T\dots} \stackrel{q_T \ll Q}{\sim} \sum_j H_{j\bar{j}} \int \mathrm{d}^2 \boldsymbol{k}_{T,1} \mathrm{d}^2 \boldsymbol{k}_{T,2} f_j(\boldsymbol{x}, \boldsymbol{k}_{T,1}; \boldsymbol{\mu}, \boldsymbol{\zeta}) f_{\bar{j}}(\boldsymbol{x}, \boldsymbol{k}_{T,1}; \boldsymbol{\mu}, \boldsymbol{\zeta}) \delta^{(2)}(\boldsymbol{q}_T - \boldsymbol{k}_{T,1} - \boldsymbol{k}_{T,2})$$

At large $q_T \sim Q$ the cross section is determined solely by fixed order collinear factorization (SIDIS, Drell-Yan, e⁺e⁻ --> back-to-back hadrons,...)

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\boldsymbol{q}_T \dots} \stackrel{q_T \sim Q}{\sim} H(q_T) \otimes f \otimes f$$

What we know

Similarly, at large TM (k_T)/ small b_T the TMDs are **uniquely determined** by an OPE expansion in terms of collinear PDFs/FFs

 $f_{i/H}(x, b_T; \mu, \zeta) = \widetilde{C}_{ij}(x, b_T; \mu, \zeta) \otimes f_{j/H}(x; \mu) + \mathcal{O}(mb_T)$ Perturbatively calculable **Usual PDFs**

Most of these integrals are divergent. A more careful treatment is necessary

> <u>Credits: Lorcé, Pasquini and</u> <u>Vanderhaeghen</u>

Integral relations are more complicated

$$\int_{0}^{\mu} d^{2}\boldsymbol{k}_{T} f_{i/h}(x, k_{T}; \mu, \mu^{2}) = f_{i/h}(x; \mu) + C_{\Delta, ij} \otimes f_{j/h} + p.s.$$
Purely perturbative

Even for the polarized cases (Sivers, etc...)

Conventional (pheno) approach

Final parametrization of a TMD

$$\tilde{f}_{j/p}(x; \boldsymbol{b}_{\mathrm{T}}; \mu_Q, Q) = \widetilde{f}_{j/p}^{\mathrm{OPE}}(x; \boldsymbol{b}_{*}; \mu_{b_{*}}, \mu_{b_{*}}) \times \\ \times \exp\left\{\int_{\mu_{b_{*}}}^{\mu_Q} \frac{\mathrm{d}\mu'}{\mu'} \left[\gamma\left(\alpha_S(\mu'); 1\right) - \ln\left(\frac{Q}{\mu'}\right)\gamma_K\left(\alpha_S(\mu')\right)\right] + \ln\left(\frac{Q}{\mu_{b_{*}}}\right)\tilde{K}(\boldsymbol{b}_{*}; \mu_{b_{*}})\right\} \\ \times \exp\left\{-g_{j/p}(x, \boldsymbol{b}_{\mathrm{T}}) - g_K(\boldsymbol{b}_{\mathrm{T}})\ln\left(\frac{Q}{Q_0}\right)\right\} \\ \times \exp\left\{-g_{j/p}(x, \boldsymbol{b}_{\mathrm{T}}) - g_K(\boldsymbol{b}_{\mathrm{T}})\ln\left(\frac{Q}{Q_0}\right)\right\} \\ \widetilde{f}_{j/p}^{\mathrm{OPE}}(x, \boldsymbol{b}_{*}; \mu_{b_{*}}, \mu_{b_{*}}) = \tilde{C}_{j/j'}(x/\xi, \boldsymbol{b}_{*}; \mu_{b_{*}}, \mu_{b_{*}}) \otimes \tilde{f}_{j'/p}(\xi; \mu_{b_{*}}) + \mathcal{O}\left(m^{2} \kappa_{\mathrm{max}}\right) \\ \widetilde{Same \text{ for FF}} \\ Fixed order collinear factorization \\ 7$$

(Some) Issues with conventional approach

Matching at and after $k_T/Q \sim 1$

(Some) Questions

- What do we mean by **perturbative and nonperturbative** contributions?
- How much **sensitivity to collinear functions** do the TMDs have?
- Can we test different models and our assumptions in a manageable manner?
- Can we maximize the predictive power?
- Do we have **control** over the theoretical/model errors?

Create a framework that facilitates the answers: HSO approach

Hadron Structure Oriented approach

TMD PDF HSO parametrization at input scale

Integral relation/ OPE matching

No need of b_{max} or b_{min}

Smooth Perturbative-Nonperturbative interpolation

(regardless of the NP model !!)

TMD PDF HSO parametrization at input scale

TMD PDF HSO parametrization at input scale

No need to forcibly divide space into two parts with b_{max}

Quick comparison

Conventional

 b_{max} : takes care of large logs at large b_T

Large logs taken care by the integral relation/OPE matching

b_{min}: takes care of integral relation(but changes OPE expansion)

Integral relation sastified by construction

 $\mu_{b*}(b_T, b_{max})$: takes care of RG improvement

RG improvement with a functional of b_T only (no b_{max})

Phenomenology: test the HSO with Drell-Yan

Pheno strategy:

Data at different Q not on the same footing

Extractions from E288

21

Higher Q postdictions: test different fits on the same experiment

Higher Q postdictions: test different models on the same experiment

A postdiction of CDFII with E288 GAUSSIAN fit

A postdiction of CDFII with E288 SPECTATOR fit

 10^{1}

 10^{0}

10⁻¹

 10^{-2}

 10^{-3}

 10^{-4}

10⁻⁵

10⁻⁶

 10^{-7}

 10^{2}

Comparison with MAP22

TMDs are affected by collinear distributions

Next/Ongoing

Sivers TMD

..2

Not the Qiu-Sterman function

$$\pi \int_0^{\mu} dk_T^2 k_T^2 f_{1T}^{\perp}(x, k_T; \mu, \mu^2) = M^2 f_{1T}^{\perp,(1)}(x; \mu)$$

Intrinsic transverse momentum and evolution in weighted spin asymmetries

Jian-Wei Qiu[®],^{1,*} Ted C. Rogers[®],^{1,2,†} and Bowen Wang[®],^{3,‡} ¹Jefferson Lab, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA ²Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA ³Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China

(Received 7 May 2020; accepted 8 June 2020; published 25 June 2020)

Similarly, just exploiting the properties of the Fourier transform and the OPE expansion:

$$\tilde{f}_{1T}^{'\perp}(x, b_T; \mu, \zeta) = \sum_{n=0}^{\infty} \sum_{k=0}^{2n} a_S^n b_T L_b^k \tilde{C}_{1T}^{\perp}(x; \mu, \zeta) + \mathcal{O}(\Lambda^2 b_T^2)$$

Ongoing calculations and extension of the HSO approach to Sivers

Summary

We have a framework that

- 1. Is consistent with the large k_T tail from theory (where it should)
- 2. Satisfies an integral relation: pseudo probabilistic interpretation
- 3. No b_{max} or b_{min} dependence: all errors are under control
- 4. NP (core) models are very easily swappable and testable

Pheno methodology: Fit low Q, test against higher Q (not mandatory)

NEXT/SOON:

Sivers, SIDIS large q_T issue, more refined models, input from Lattice?, higher orders...

Thank you

Backup slides

The NP Collins-Soper kernel

Why is this important?

• We can **quantitatively** and **conclusively** answer the question:

How much collinear dependence do my TMD extractions carry?

Choose "core" models (examples)

$$f_{\text{core},i/p}^{\text{Gauss}}\left(x, \mathbf{k}_{\text{T}}; Q_{0}^{2}\right) = \frac{e^{-k_{\text{T}}^{2}/M_{F}^{2}}}{\pi M_{F}^{2}}$$

Gaussian "core" models

Spectator-like "core" models

$$f_{\text{core},j/p}^{\text{Spect}}\left(x, \boldsymbol{k}_{\text{T}}; Q_{0}^{2}\right) = \frac{6M_{0F}^{6}}{\pi\left(2M_{F}^{2} + M_{0F}^{2}\right)} \frac{M_{F}^{2} + k_{\text{T}}^{2}}{\left(M_{0F}^{2} + k_{\text{T}}^{2}\right)^{4}}$$