A_{LU} in semi-inclusive production of dihadrons with kaons at CLAS12

Connor Pecar

Duke University

Duke

Research supported by DOE Office of Science

Dihadron semi-inclusive DIS

$$= \frac{\alpha^{2}}{4\pi x y Q^{2}} \left(1 + \frac{\gamma^{2}}{2x}\right) \lambda_{e} \\ \times \sum_{\ell=0}^{\ell_{\max}} \left\{ C(x,y) \sum_{m=1}^{\ell} \left[P_{\ell,m} \sin(m(\phi_{h} - \phi_{R_{\perp}})) 2 \left(F_{LU,T}^{P_{\ell,m} \cos(m(\phi_{h} - \phi_{R_{\perp}}))} + \epsilon F_{LU,L}^{P_{\ell,m} \cos(m(\phi_{h} - \phi_{R_{\perp}}))} \right) \right] \\ + W(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \sin((1-m)\phi_{h} + m\phi_{R_{\perp}}) F_{LU}^{P_{\ell,m} \sin((1-m)\phi_{h} + m\phi_{R_{\perp}})} \right\}.$$
Phys. Rev. D 90, 114027

- Analyzing the production of two hadrons (*ep* → *eh*₁*h*₂*X*) with at least one kaon *K*⁺π⁻, π⁺K⁻, K⁺K⁻
- Relative $|l, m\rangle$ of hadrons \rightarrow Infinite number of modulations in (ϕ_h, ϕ_{R_\perp}) , expansion in θ $(P_{l,m})$
 - Each amplitude proportional to $PDF(x, k_{\perp}) \otimes DiFF^{[l,m)}(z, M_h)$

Dihadron beam spin asymmetry

Measuring beam spin asymmetry (BSA) as

$$A_{LU} = \frac{1}{P} \frac{N_{+} - N_{-}}{N_{+} + N_{-}} \propto \frac{F_{LU}}{F_{UU}}$$

Taking $l_{max} = 2$ and measuring 7 azimuthal modulations of BSA integrated over θ (integrated over l):

CEBAF Large Acceptance Spectrometer: CLAS12

- Spectrometer in Jefferson Lab Hall B
- Large forward-angle acceptance
- Operates up to luminosity of $10^{35} cm^{-2} s^{-1}$
- Data used in this analysis taken with unpolarized LH₂ target in 2018-2019
 - 10.6/10.2 GeV electron beam with average longitudinal polarization ~87%

Duke

Dihadron measurements at CLAS12

- 2021: A_{LU} measured in π⁺π⁻ production with LH₂ target dataset (PRL 126, 152501)
 Measured A^{sin(φ_{R⊥})}_{LU} combined with measured H⁴₁ from BELLE data⁽¹⁾ used for extraction of twist-3 e(x)⁽²⁾
- A_{LU} with kaon final states: further access to flavor dependence, contributions to asymmetries/DiFFs from K^{*}, φ vector mesons
 (1) PRL 107, 072004(2011)
 (2) PRD 106, 014027

Kaon identification at CLAS12

- p < 2.5 GeV/c: forward time-of-flight (FTOF)
- $p > \sim 2GeV/c$: Ring-imaging Cherenkov detector
 - Only in 1 of 6 sectors at time of data taking, used only for pion background estimate in this analysis
- Random forest model trained on simulated FTOF and calorimeter responses used to reduce pion background
 - Extend accepted momentum range to 3.5 GeV/c

FTOF performance (NIM A 960 (2020) 163629)

CLAS12 RICH

Dihadron SIDIS kinematics

- Require $Q^2 > 1 \ GeV^2/c^2$, $W > 2 \ GeV$, y < 0.8
- $M_x > 1.5 GeV/c$ for all final states
 - Handle to remove exclusive processes
- Large fraction of events from intermediary vector mesons

 $4...^{\sin(\phi_{R_{\perp}})} \propto e(x)H_1^{\triangleleft}$ A

 $4...^{\sin(\phi_{R_{\perp}})} \propto e(x)H_1^{\triangleleft}$

Duke

 $\sin(\phi_h - \phi_{R_\perp})$ $\propto f(\mathbf{x}) \otimes G_1^{\perp}$ $A_{I,U}$

Duke

Summary

- Preliminary results shown on measurement of BSA in semi-inclusive $K^+\pi^-$, π^+K^- , K^+K^- with CLAS12
- Variety of dihadron final states now measured at CLAS12 $(\pi^+\pi^-, \pi^{+/-}\pi^0)$ providing novel access to flavor dependence in hadronization and probing effects of vector mesons

