

Status of the MUSE experiment

Dr. Tigran Armand Rostomyan :: Scientist :: Paul Scherrer Institute Yerevan, Armenia, 02.Oct.2024

THE PROTON RADIUS PUZZLE (2010)

charge radius was a 5σ effect and grew to a 7σ effect in 2013.

I. Sick, PLB 576, 62 (2003); P.J. Mohr et al., Rev. Mod. Phys. 80, 633 (2008); J.C Bernauer et al., PRL 105, 242001 (2010); R. Pohl et al., Nature 466, 213 (2010)

Recent situation

Newer electronic measurements tend to show a smaller radius Today some tension between experiments persists...

Disagreement of different Data

1,5% disagreement between **PRad** highest Q^2 and **Mainz** form factor values leads to **3,0%** discrepancy in cross-sections. According to *Domínguez, Alarcón and Weiss* dispersion + effective field theory calculations (**radius** is treated as a **free parameter**): this discrepancy leads to ~**0,04 fm** difference in extraction of the radius.

The MUon proton Scattering Experiment (MUSE)

- ~63 MUSE collaborators from 24 institutions in 5 countries
- Located at the Paul Scherrer Institut in Villigen, Switzerland
- PiM1 beamline: secondary beam with $e^{+/-}$, $\mu^{+/-}$ and $\pi^{+/-}$ at few MHz flux

Muon Scattering Experiment (MUSE)

Quantity	Coverage
Beam momenta	115, 160, 210 MeV/c
Scattering angle	20 - 100 degrees
Q ² range for e	0.0016 - 0.0820 GeV²/c4
Q^2 range for μ	0.0016 - 0.0799 GeV²/c4

- MUSE will directly compare *ep* and *μp* scatterings at sub-percent level precision at 3 different beam momenta in πM1 area at PSI
- Low Q² kinematics for sensitivity to the proton charge radius
- Independent and combined determination of the charge form factor and Proton Charge Radius in $e^{\pm}p$ and $\mu^{\pm}p$ elastic scatterings \rightarrow tests lepton universality
- With µ⁺, µ⁻ and e⁺, e⁻ → study Two-Photon Exchange (TPE) mechanisms

PS

MUSE Trigger

MUSE Analysis Diagram

- Low-level: Typically one per detector
- Mid-level: Tracking, TOF, blinding etc.
- High-level: Physics analysis

Data Blinding

- Fraction of scattered tracks at each angle are stored and hidden for blinding data
- Whether or not a track is blinded is calculated by:

$$P = s \times \frac{3-\theta}{3}$$
, where $s = 0.2(A + 0.3\cos(B \times \theta))$, and $A = 0.25 \rightarrow 1$, $B = 0.25 \rightarrow 1$

- If $P \ge R$, where R is a uniformly distributed random number between 0 and 1, then the track is blinded
- Can blind up to 25% of tracks at any given angle

Chance of blinding a track for A=0.75 and B=4.2 as a function of STT angle.

Incoming Particle Identification

- RF time: time of particles in BH planes relative to accelerator 50.6 MHz RF signal

 $\pi M1$

75°

e^+ , μ^+ , π^+ distributions at +160 MeV/c in π M1

Comparison of data with simulation for different type particle distributions in $\pi M1$

• E. Cline et al. (MUSE collaboration). PRC 105, 055201 (2022)

VETO detector

- Annular 4-element, with double PMT readout, **VETO** detector, surrounding target entrance window
- Eliminates upstream scattering and beam decays from the data-stream, reduces trigger rate from background events by ~ 30%
- $\sigma_T \le 200 \text{ ps} (1 \text{ ns}); \epsilon > 99.0\%$

MUSE Liquid Hydrogen Target

- 280 ml LH2 target
- Target **T** = 20.67 K, stable at σ_{τ} = 0.01 K level
- **Density = 0.070 g/cm³**, stable at **0.02%** level

Target Chamber Post Veto (TCPV), Vertex Reconstruction

LH2 target reconstruction for p = -115 MeV/c

- Large fraction of triggers are background from the target chamber exit posts: Slows down data taking \rightarrow increases uncertainties
- TCPV (scintillator with SiPM readout) detector designed and constructed to online veto ۲ background events originating from the target chamber exit posts

GEM Tracks at the MUSE Target

- No configuration changes other than TCPV
- Consistent beam rate at -160 MeV/c
- No TCPV vs TCPV in VETO \rightarrow 48 % trigger rate reduction

TCPV state	MIDAS rate (Hz)	Beam rate (kHz)
No TCPV	2170	1620
TCPV in VETO	1130	1620

Forward-Angle Calorimeter for MUSE (PSI)

- Calorimeter removes flying forward, high-energy γ from initial-state radiation
- $64 \times (4 \times 4 \times 30) \text{ cm}^3$ Lead-Glass crystals

 $ep \rightarrow e'p\gamma$ $p_0 = 160 \text{ MeV/c}$ full distribution CAL veto ($E_v > 0.4 p_o c$) 20 20 10⁵ 10⁵ 10 10 10⁴ 10⁴ y_, (cm) y, (cm) 10³ 10³ 10² 10² -10 -10 10 -20 -20 -20 -10 0 10 20 -10 10 20 x,, (cm) x_v (cm) photons with low reconstructed momentum, below calorimeter threshold (~40% of e-beam E)

Simulated downstream photon distribution

• S. Strauch et al. (MUSE collaboration) <u>https://arxiv.org/pdf/2307.06417.pdf</u>

• W. Lin and T. Rostomyan et al. (MUSE collaboration). Paper in preparation

STT Tracking

- STT has 2. chambers, 5 planes each in X and Y: in total 2850 Straws
- Tracking using "GenFit"; Require hits in at least **3 X**-planes and at least **3 Y**-planes on the same side
- Good agreement between data and simulation for the track position on STT
- Beam is expected to center at about **Y** = **0** and **positive X**

* In STT local coordinates

Reaction Identification

- Reaction is identified from the TOF (SPS BH) and the path length between BH and SPS
- From the track reconstruction, we can get the path length
- Knowing the incoming particle momentum and the TOF,

we can find $\beta_{incoming}$ and $\beta_{outgoing}$

PSI

Reaction Identification

- Projected uncertainties of one full year of scattering data taking
- Estimated how we divided the time, with more time at the highest momentum
- Statistics is based on 2022 data set
- Estimated systematics from the readout rate before TCPV implementation is included
- Take away message: on avarage we will be able to reach smaller than 1% uncertainties
- More work to be done

Summary and Outlook

Proton form factor, charge radius, two-photon exchange, and lepton universality measurements at Paul Scherrer Institute (PSI) with elastic scattering of 115 – 210 MeV/c e[±] and

µ⁺ from hydrogen

- 2021: Obtained first high statistics scattering data set at ±115 MeV/c.
- 2022: Completed 5 months of data taking.
 - Took data in all experimental kinematics on LH₂
- 2023: Completed 5 months of awarded beam time
- 2024: completed first half of the 5 months of awarded beam time
 - Collected approximately 50-60 % of expected total statistics
 - Expect to reach 75 % by the end of the year
 - Refining the analysis procedure
- **2025**: Similar 5 months of beam time is expected to complete the data taking

Thank You for Your Attention

MUSE will be the first muon scattering measurement with the required precision to address the Proton Radius Puzzle!

MUSE publications:

- P. Roy et al., NIM A 949 (2020) 162874
- T. Rostomyan et al., NIM A 986 (2021) 164801
- E. Cline et al., SciPost Phys. Proc. 5, 023 (2021)
- E. Cline et al., Physical Review C 105, 055201 (2022)

- L. Li et al., EPJ A (2024) 60:8
- J. C. Bernauer et al., In preparation for PRC
- Calorimeter, STT and TCPV papers: In preparation

WIR SCHAFFEN WISSEN - HEUTE FÜR MORGEN

START OF BACKUP SLIDES

WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN

E. Cline et al., Physical Review C 105 (2022) 055201

Characterization of μ and e beams in the PSI PiM1 channel:

- Average momentum of particles passing through the channel agrees with the central set momentum to within **0.03**%
- The positions of the different particle species were observed to be consistent at roughly **2 mm** level, indicating their momenta are consistent to within approximately **0.02%**
- RF time measurements of particles propagating through the channel showed approximately **0.1%** agreement with the set momentum
- Muon and electron beams have quite similar properties to the pion beam and to each other: knowing p_{π} or p_{μ} means we know p_{e} quit precisely

Pe

Radiative Corrections

Radiative Corrections are significant for **e**'s. Greatest sensitivity is to **pre-radiation**. **Photon** flies **forward** $ep \rightarrow e'p\gamma$ **Cross section in MUSE kinematics**

MUSE will integrate over a large momentum range

Beam Hodoscope (BH) for MUSE

- BH is most upstream MUSE beam-line detector
- BH is used for beam-particle identification and TOF
- 5 planes built in total
- All time resolutions \rightarrow below 100 ps
- Best achieved time resolution \rightarrow 55 ps

Beam X and Y profiles at π M1 obtained with BH live analysis

- BHD is 13 paddle plane, with 8 mm wide vertical paddles
- BHC is 16 paddle plane, with 4 and 8 mm wide horizontal paddles

GEM as incident particle tracker

- Incoming beam is tracked by the GEM detectors
- Tracking using "GenFit"; Require hits in at least 2 out of 4 GEM planes
- Particle distribution of the $\pi M1$ beam is well understood

Comparison of G4beamline simulations and data at the MUSE target

Beam Monitor (BM) for MUSE

- BM is installed in the beam-line downstream of the MUSE target
- Is used for TOF from BH to BM for Muon and Pion beam momenta
- Is used for flux determination of un-scattered beam particles downstream the target
- Indicates background events like Møller or Bhabha scattering

Scattered Particle Scintillator (SPS)

Front wall: 18 bars (**6cm x 3cm x 120cm** Rear wall: 28 bars (**6cm x 6cm x 220cm**)

- 2 walls on each side of beam. 92 bars, double-ended readout
- Determines **Energy** and **Time** of the scattered off the target particles
- Muon Decays in flight can be removed with TOF (BH→SPS)

220 cm BC404 bars: $\sigma_{av} = 52ps \pm 4ps$ **120 cm** BC404 bars: $\sigma_{av} = 46ps \pm 4ps$

Peak: particles going through the bar.

Low energy tail: particles going out of the side of the bar