
Tests of Fundamental Physics via p0, h, h¢

Liping Gan
University of North Carolina Wilmington

Outline

• Introduction of Physics

• PrimEx Primakoff Program 

• JLab Eta Factory (JEF)  

• Summary 

Thanks for support by NSF PHY-1812396 and PHY-2111181.



Open Questions in Modern Physics

§ What is the origin of QCD confinement? 
§ How did the visible mass emerge in the early 

universe?
§ What is the cause of the matter-antimatter 

asymmetry in the universe?
§ What is the nature of dark matter?
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Light pseudoscalar mesons offer a sensitive tool to explore 
these fundamental questions.
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Low-Energy QCD Symmetries and Light Mesons

)1()1()3()3( BARL UUSUSU ´´´

q QCD Lagrangian in Chiral limit (mq→0) is invariant under:

q UA(1) is explicitly broken:
     (Chiral anomalies) 

Ø Non-zero mass of h0
Ø Γ(p0→gg), Γ(h→gg), Γ(h¢→gg)

q Chiral symmetry SUL(3)xSUR(3) 
spontaneously breaks to SU(3)
Ø 8 Goldstone Bosons (GB)

q SUL(3)xSUR(3) and SU(3) are 
explicitly broken: 
Ø GB are massive
Ø Mixing of p0, h, h¢

The π0, η, η¢ system provides a rich laboratory to study the  symmetry 
structure of confinement QCD.
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What is the origin of visible mass?
Mass-generating mechanisms:
• Higgs boson, alone is responsible for <2% of the visible mass in the 

universe. 

• Emergent Hadron Mass (EHM) and its constructive interference 
with Higgs-boson account for >98% of the visible mass.

(EHM)

Complementary to proton, pseudoscalar mesons offer a unique 
opportunity to study the interference between two known mass 
generating mechanisms. 

 Few Body Syst. 63 (2022) 2,42
 Few Body Syst. 65 (2024) 2,60



Discrete Symmetries 
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Class III has much weaker experimental constraint, offer an 
opportunity for new physics search in η decays.

Ø A new C- and T-violating, and P-conserving interaction was proposed by Bernstein, 
Feinberg and Lee, but little theoretic progress until very recent.  Phys. Rev.,139, B1650 (1965)   

Ø Examples: η(") → 3𝛾,	η(")→ 𝜋$𝛾(∗)	, ⋯Lee
Ø Electroweak radiative corrections mix class II and III, but much weaker EDM constraints.  

Class II: P-, CP-violation

Class III: C-, CP-violation

Ø QCD θ-term
Ø Examples: η(") → 2𝜋,	η(")→ 𝜋&𝜋'𝛾(∗), ⋯
Ø Strong constraints from EDM measurements
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Dark Sector 

• New gauge forces, bosons and 
fermions beyond SM.

• The stability of dark matter can be 
explained by the dark charge 
conservation.

BSM Physics in Dark Sector 



Portals Coupling SM and Dark Sector 
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Standard Model: Dark Sector:
Gauge Interactions?

Dark matter?
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How to look for dark sectors?

SU(3)XSU(2)XU(1)

Standard Model:

+ 3 generations of 
matter

Dark Sector:

Gauge Interactions?

Matter?

14Sunday, 29 January, 17

Portals:    
vector
Scalar
Fermion
ALP 

 

κBµνVµν
H +H (εS +λS2 )

SU(3)× SU(2)×U(1)

ξLHN
Fermion: 𝜂 → 𝜋!𝐻,	
	 𝑤𝑖𝑡ℎ	𝐻 → 𝜈𝑁", 𝑁" → ℎ#𝑁$, ℎ# → 𝑒%𝑒&

Phys. Rept. 945 (2022) 1-105, arXiv:2207.06905, arXiv:2203.07651 



Landscape of BSM Physics Search 
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Complementary to other types of experiments, pseudoscalar mesons offer 
unique sensitivity for sub-GeV new physics that are flavor-conserving and 
light quark-coupling.  

𝜋0 , η, ηꞌ 

Rept. Prog. Phys. 79, no.12, 124201



Jefferson Lab
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Primakoff Effect
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• The higher beam energy is, the higher 
Primakoff cross section and the better 
separation of Primakoff from the 
nuclear backgrounds.

• A higher beam energy is more 
important for more massive particle 



PrimEx Primakoff Program at JLab 6 & 12 GeV

Precision measurements of 
electromagnetic properties of 
p0, h, h¢ via Primakoff effect

b) Transition Form Factors 
  at Q2 of 0.001-0.3 GeV2/c2:

        F(gg*→ p0), F(gg* →h), F(gg* →h¢)
Input to Physics:

Ø precision tests of chiral
    symmetry and anomalies
Ø light quark mass ratio
Ø h-h¢ mixing angle
Ø input to calculate HLbL in (g-2)μ 
Ø origin of the visible mass

Input to Physics:
Ø p0,h and h¢ electromagnetic
     interaction radii
Ø is the h¢ an approximate 
    Goldstone boson?
Ø input to calculate HLbL in (g-2)μ 
Ø origin of the visible mass
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a) Two-Photon Decay Widths:
1) Γ(p0→gg) @ 6 GeV
2) Γ(h→gg) 
3) Γ(h¢→gg) 



Status of Primakoff Program at JLab 6 & 12 GeV 

Precision measurements of 
electromagnetic properties of 
p0, h, h¢ via Primakoff effect

b) Transition Form Factors 
  at Q2 of 0.001-0.5 GeV2/c2:

        F(gg*→ p0), F(gg* →h), F(gg* →h¢)
Input to Physics:

Ø precision tests of chiral
    symmetry and anomalies
Ø determination of light quark 
    mass ratio
Ø h-h¢ mixing angle
Ø input to calculate HLbL in (g-2)μ

Input to Physics:
Ø p0,h and h¢ electromagnetic
     interaction radii
Ø is the h¢ an approximate 
    Goldstone boson?
Ø input to calculate HLbL in (g-2)μ
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a) Two-Photon Decay Widths:
1) Γ(p0→gg) @ 6 GeV (in Hall B)
2) Γ(h→gg) 
3) Γ(h¢→gg) 

1.50% accuracy

Science 368, 506-509 (2020)

• The chiral anomaly prediction is 
exact for massless quarks:

• Γ(p0®gg) is one of the few 
quantities in confinement region 
that QCD can calculate precisely 
at ~1% level to higher orders! 



Status of Primakoff Program at JLab 6 & 12 GeV 
(cont.)

b) Transition Form Factors 
  at Q2 of 0.001-0.5 GeV2/c2:

        F(gg*→ p0), F(gg* →h), F(gg* →h¢)
Input to Physics:

Ø precision tests of chiral
    symmetry and anomalies
Ø determination of light quark 
    mass ratio
Ø h-h¢ mixing angle
Ø input to calculate HLbL in (g-2)μ

Input to Physics:
Ø p0,h and h¢ electromagnetic
     interaction radii
Ø is the h¢ an approximate 
    Goldstone boson?
Ø input to calculate HLbL in (g-2)μ
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a) Two-Photon Decay Widths:
1) Γ(p0→gg) @ 6 GeV
2) Γ(h→gg) 
3) Γ(h¢→gg) On-Going PrimEx-eta 

experiment (in Hall D)

• A full data set was completed via 
three run periods in 2019, 2021 
and 2022.

• Data analysis is in progress.
     

Precision measurements of 
electromagnetic properties of 
p0, h, h¢ via Primakoff effect
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Physics for Γ(h→gg) Measurement 
Resolve long standing 
discrepancy between previous 
collider and Primakoff 
measurements:
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• Extract h-h¢mixing angle

• Improve calculation of the h-
pole contribution to 
Hadronic Light-by-Light 
(HLbL) scattering in (g-2)μ

• Improve all partial decay 
widths in the h-sector



 A clean probe for quark mass ratio:

Ø 𝜂→3π decays through isospin violation:
Ø         is small 
Ø Amplitude:
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Precision Determination Light Quark Mass Ratio 

Phys. Rept. 945 (2022) 1-105 



Space-Like Transition Form Factors 
(Q2 : 0.001-0.3 GeV2/c2)

• Direct measurement of slopes

– Interaction radii:
Fγγ*P(Q2)≈1-1/6 !	<r2>PQ2 

– ChPT for large Nc predicts relation 
between the three slopes. Extraction of 
Ο(p6) low-energy constant in the chiral 
Lagrangian

• Input for hadronic light-by-light 
calculations in muon (g-2) 

16
Phys.Rev.D65,073034

Projected E12-22-003 (in Hall B)
on  F(gg*→ p0) 

No data

𝜋!, η, η′
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1. The first 𝜋!	Primakoff production off an electron target to measure 
Γ(p0→gg) and F(gg*→ p0).

2. Improve the precisions of 𝜂/𝜂ꞌ Promakoff production off nuclear targets.

3. Search for new sub-GeV gauge bosons (scalars and pseudoscalars) via 
the Primakoff production:

• Strong CP and Hierarchy problems

• (𝑔 − 2)' and puzzle of proton charge radius

• Portals coupling SM to the dark sector: 

New opportunities with JLab 22 GeV Upgrade  

H +H (εS +λS2 )
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Advantages of the 𝜋# Primakoff Production off an Electron
  

Science 368, 506-509 

PrimEx-II: 𝛾 + !"𝑆𝑖 → 𝜋# + !"𝑆𝑖

Main challenges for the 
nuclear target: 
• Nuclear backgrounds
• Nuclear effects
• No recoil detection

Advantages of an electron target: 
• Eliminate all nuclear backgrounds
• A point-like electron target to 

eliminate nuclear effects
• Recoiled electron detection 

Measurement Reaction 𝑬𝒕𝒉 
(GeV)

Γ(𝜋# → 𝛾𝛾) 𝛾 + 𝑒 → 𝜋# + 𝑒 18.0

𝐹(𝛾∗𝛾 → 𝜋#) 𝑒 + 𝑒 → 𝜋# + 𝑒 + 𝑒 18.1

2 3 4
2 2Pr

. .3 4

8 ( ) sine m
d Z E F Q
d m Qgg p

p

s a b q= G
W

𝑑𝜎%&
𝑑Ω

= Γ''
8𝛼
𝑚(
)
𝛽)𝐸*

𝑄*
sin+ 𝜃(

𝐴𝐸!: 4.45-5.30 GeV

𝛾 + 𝑒 → 𝜋! + 𝑒



Projected Γ 𝜋# → 𝛾𝛾  at JLab 22 GeV with an Electron Target
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Improve Primakoff Measurements  of	 𝜂/𝜂ꞌ with nuclear targets

20

𝐸0 = 10 GeV 𝐸0 = 20 GeV

𝛾 + 1𝐻𝑒 → η′ + 1𝐻𝑒𝑟2



Search for sub-GeV Scalar and Pseudoscalar via 
Primakoff Effect 
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Favorable experimental condition:

• A high energy beam
• A high Z nuclear target

The Primakoff signal dominates 
in the forward angles 

Minimizing the QCD backgrounds 
PrimEx I

Phys.Rev.Lett. 106 (2011) 162303



Projected Reach for a ALP at JLab 22 GeV
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𝛾 + 𝑃𝑏 → 𝑎 + 𝑃𝑏

𝑎 → 𝛾𝛾
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JLab Eta Factory (JEF) Experiment at GlueX
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u Simultaneously produce η/ηꞌ on LH2 target with 8.4-11.7 GeV tagged 
photon beam via  γ+p → η/ηꞌ+p

u Reduce non-coplanar backgrounds by detecting recoil protons 
with GlueX detector

u Upgraded Forward Calorimeter with High resolution, high granularity 
     PbWO4 insertion (FCAL-II)  to detect multi-photons from the η/ηꞌ decays

FCAL-II

u The GlueX detector  will detect the charged products from the η/ηꞌ decays
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Main JEF Physics Objectives 

1. Search for sub-GeV hidden bosons 
       vector:  

• Leptophobic vector B ꞌ  

• Hidden or dark photon: 
 
      scalar S:

       Axion-Like Particles (ALP): 

2. Directly constrain CVPC new physics:                           

3. Precision tests of low-energy QCD:
• Interplay of VMD & scalar dynamics in ChPT:              
• Transition Form Factors of η(ꞌ) :

4. Improve the light quark mass ratio via Dalitz distributions of h®3p 

η(() → 3𝛾,	η(()→ 2𝜋*𝛾,	η(()→ 𝜋+𝜋,𝜋*



Example of a Key Channel: h®p0gg 

v Search for sub-GeV gauge 
bosons 
• A leptophobic vector B’:
    h®gB’, B’ ®p0g
• An electrophobic scalar Φ’: 
     h®p0Φ’, Φ’®gg

PRL 117,101801 (2016); PL B740,61(2015)
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Standard Model:
Dark Sector:

Gauge Interactions?
Dark matter?

14

How to look for dark sectors?

SU(3)XSU(2)XU(1)

Standard Model:

+ 3 generations of 
matter

Dark Sector:

Gauge Interactions?

Matter?

14Sunday, 29 January, 17

Portal:    
vector
Scalar
fermion 

 

κBµνVµν
H +H (εS +λS2 )

(n = 4)

1. New physics:

2. Confinement QCD: v A rare window to probe interplay 
of VMD & scalar resonance in 
ChPT 

SU(3)× SU(2)×U(1)
PR,D89,114008 

ξLHN
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B’

g 

PL, B221, 80 (1989)
PR,D89,114008 

Striking signature for B-boson in η→π0γγ 
!  B production:   A.E. Nelson, N. Tetradis, Phys. Lett., B221, 80 (1989) 

!  B decays: 

 
 

 

 
!                                               highly suppressed SM background  
 
 
 
 
 
 
 
  

7 

B→π0γ in 140-620 MeV mass range 

S. Tulin, Phys.Rev., D89, 
14008 (2014)  

Γ(η→ π 0γγ ) ~ 0.3eV

η→γB→γ+π0γ 
  
Search for a resonance   
peak of π0γ  for  
mB ~140-550 MeV 

h® B’g ®p0gg 

JEF Experimental Reach for B’ 
A search for a leptophobic dark B’ boson coupled to baryon number is 
complementary to ongoing searches for a dark photon
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cPTh by Oset  et al., Phys. Rev. D77, 073001

Projected JEF on SM Allowed η→p0gg

We measure both BR and Dalitz distribution    
umodel-independent determination of two LEC’s of the O(p6) counter- terms
uprobe the role of scalar resonances to calculate other unknown  O(p6) LEC’s

J.N. Ng and D.J. Peters, Phys. Rev. D47, 4939

J. Bijnens, talk at AFCI workshop 

http://www.physics.umass.edu/acfi/seminars-and-workshops/hadronic-probes-of-fundamental-symmetries/chiral-perturbation-theory-for-i-3


Test Charge Conjugation Invariance

u C is maximally violated in the weak 
force and is well tested.

u Assumed in SM for electromagnetic 
and strong forces, but it is not 
experimentally well tested  

    (current direct constraint: Λ ≥ 1 GeV)
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Mode Branching Ratio 
(upper limit)

No. γ’s

3γ < 1.6•10-5

3                       
π0γ < 9•10-5

2π0γ < 5•10-4

5                       3γπ0 Nothing published

3π0γ < 6•10-5

7                        
3γ2π0 Nothing published

C Violating η  neutral decays 
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Experimental Improvement on C-violating η→3γ

u SM contribution: 
    BR(η→3γ) <10-19 via P-violating
    weak interaction.

u  A calculation due to  new 
     physics by Tarasov suggests: 
     BR(h®3g)< 10-2  

      Sov.J.Nucl.Phys.,5,445 (1967)

Proj. JEF

Improve BR upper limit by one order of 
magnitude to directly tighten the constraint on 
CVPC new physics



Status of the JEF Experiment
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2. Commissioning of FCAL-II and data 
taking with FCAL-II are scheduled 
to start in Jan 2025.

Undergraduate workforce 
• 1596 PbWO4 modules are 

developed to replace ~400 Pb-
glass modules.

• Installation of the upgraded 
FCAL-II has been on-going since 
Mar 2023 and will be completed 
by the end of 2024.

• Over 40 undergraduate students 
from 11 institutes were trained by 
involving in this project.

1. Developed  an upgraded FCAL-II with a PbWO4 insert.:

Oct 6, 2023Summer 2023

PbWO4 module (2x2x20 cm3)

Pb-glass module (4x4x45 cm3)



Summary
u Light pseudoscalar mesons offer a sensitive probe to test fundamental 

symmetries and to search for new physics beyond  the standard model.

u PrimEx Primakoff program
      has been in progress @ 6&12 GeV 

ü The published PrimEx result on the 𝜋6 lifetime provides a stringent  test of low-energy 
QCD. 

ü Data collection on Γ 𝜂 → 𝛾𝛾  was completed in 2022 and data analysis is in progress.
ü A new experiment on 𝐹(𝜋0→𝛾∗ 𝛾)  off a nuclear target is on the way.

future JLab 22 GeV upgrade will offer new opportunities
ü New generation of Primakoff experiments on Γ 𝜋6 → 𝛾𝛾  and 𝐹(𝛾∗𝛾 → 𝜋6) off an atomic 

electron target.
ü Improve measurements of more massive particles, such as η and ηꞌ, off nuclear targets.
ü Search for new sub-GeV gauge bosons (scalars and pseudoscalars).

u The JEF experiment  will start data collection in Jan 2025 using newly 
upgraded FCAL-II calorimeter with a PbWO4 insert. 
ü Search for sub-GeV  hidden bosons: vector, scalar, and  ALP
ü Directly constrain CVPC new physics
ü Precision tests of low-energy QCD: the role of scalar dynamics in ChPT; transition form 

factors of h/h’ to calculate HLbL contributions in (g-2)μ 
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Class III: C- and CP-Violation in 𝜂(B) → 𝜋C𝜋D𝜋#, 𝜂B → 𝜋C𝜋D𝜂
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• CP-violation from these processes is not bounded by EDM.

• Complementary to nEDM searches even in the case of T and P odd 
observables, since the flavor structure of the 𝜂	is different from the 
nucleus



Uniqueness of JEF Experiment 
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1. Suppressed backgrounds in rare neutral decays comparing to the 
other experiments using:

       a) η/η’ energy boost;  b) upgraded FCAL-II; c) recoil detection

3. Simultaneously produce tagged η and ηꞌ  with similar rates 
    (~5x105 per day)  
          

2. Capability of running in parallel with GlueX and other experiments in Hall D 
               potential for a high-statistics data set
    


