20th International Workshop on Hadron Structure and Spectroscopy & 5th Workshop on Correlations in Partonic and Hadronic Interactions

Hadronization in eter annihilation

EHU QC

hadron structure - a global approach

2

hadron structure - a global approach

PDF

Physics Letters B Volume 230, Issues 1–2, 26 October 1989, Pages 141-148

The valence and strange-sea quark spin distributions in the nucleon from semi-inclusive deep inelastic lepton scattering

Leonid L. Frankfurt, Mark I. Strikman, Lech Mankiewicz¹, Andreas Schäfer, Ewa Rondio, Andrzej Sandacz, Vassilios Papavassiliou

hadron structure - a global approach

	→ PDF
PHYSICS LETTERS B	Physics Letters D
	EL Nuclear Physics B Volume 396, Issue 1, 10 May 1993, Pages 161-182
ility odel	T S] Fragmentation of transversely polarized
	fr quarks probed in transverse momentum
utron are	ie distributions
vacuum- 3 and β_n =	Lec John Collins

hadron structure - a global approach

		-	PDF			
PHYSICS LETTERS B		3 (C.)	Dhusias Lattars D	PHYSICS LETTERS B		
	EL	and the second	Nuclear Physics B	PHYSICS B		
	PHYSICAL REVIEW D					
ility	T	EL	PARTICLES AND FIELDS			
odel	SJ	F	THIRD SERIES, VOLUME 54, NUMBER 11	1 DECEMBER 1996		
	fr	q	RAPID COMMUNICATIONS			
eutron are	le	d	Rapid Communications are intended for important new results which deserve accelerated publication, and are therefore given priority in the editorial office and in production. A Rapid Communication in Physical Review D should be no longer than five printed pages and must be accompanied by an abstract. Page proofs are sent to authors, but because of the accelerated schedule, publication is generally			
vacuum-	<u>Lec</u>	<u>Joł</u>	not delayed for receipt of corrections unless requested by the author.			
³ and β_n =	<u>Ew</u>	_	Polarized A's in the current fragmentation re	aion		
lties in			rolarized A s in the current magnentation re	egion		

	5	
≝ ~- NU		
PH	rsics A	

(confinement, heavy-ion physics, etc.)

FFs not calculable from first principles

	5	
≝ ~- NU		
PH	rsics A	

single-hadron^{*)} (TMD^{**)}) fragmentation functions

Gunar Schnell

*) complemented by rich world of di-hadrons **) transverse-momentum dependent

single-hadron^{*)} (TMD^{**)}) fragmentation functions

Gunar Schnell

*) complemented by rich world of di-hadrons **) transverse-momentum dependent

relevant for unpolarized final state

single-hadron^{*)} (TMD^{**}) fragmentation functions

Gunar Schnell

*) complemented by rich world of di-hadrons **) transverse-momentum dependent

relevant for unpolarized final state

Collins FF: $H_1^{\perp,q \to h}$ ordinary FF: $D_1^{q \rightarrow h}$

> FF ... fragmentation function IWHSS & CPHI 2024

single-hadron^{*}) (TMD^{**}) fragmentation functions

Gunar Schnell

*) complemented by rich world of di-hadrons **) transverse-momentum dependent

relevant for unpolarized final state

polarized final-state hadrons

single-hadron^{*}) (TMD^{**}) fragmentation functions

*) complemented by rich world of di-hadrons **) transverse-momentum dependent

relevant for unpolarized final state

polarized final-state hadrons

FF ... fragmentation function IWHSS & CPHI 2024

etetannihilation at BESIII, BaBar & Belle

eter annihilation at BESIII, BaBar & Belle

- BESIII: symmetric collider ($E_e=1...2.4$ GeV)
- <u>BaBar/Belle: asymmetric beam-energy</u> e^+e^- collider near/at $\Upsilon(4S)$ resonance
- different scales (QCD evolution) and sensitivities to quark flavor N
 - BESIII below sharm threshold closer to typical SIDI case

IWHSS & CPHI 2024

 \circ 5

- <u>BaBar/Belle: asymmetric beam-energy</u> e^+e^- collider near/at $\Upsilon(4S)$ resonance
- sensitivities to quark flavor
 - to typical SIDIS case

fragmentation in eter annihilation

- single-inclusive hadron production, $e^+e^- \rightarrow hX$
 - D₁ fragmentation function
 - $(D_{1T} \perp \text{ spontaneous transv. polarization})$

IWHSS & CPHI 2024

fragmentation in eter annihilation

- single-inclusive hadron production, $e^+e^- \rightarrow hX$
 - D₁ fragmentation function
 - $(D_{1T} \perp \text{ spontaneous transv. polarization})$
- inclusive "back-to-back" hadron pairs, $e^+e^- \rightarrow h_1h_2X$
 - product of fragmentation functions
 - allows for tagging of flavor, transverse-momentum, and/or polarization

fragmentation in eter annihilation

- single-inclusive hadron production, $e^+e^- \rightarrow hX$
 - D₁ fragmentation function
 - $(D_{1T^{\perp}} \text{ spontaneous transv. polarization})$
- inclusive "back-to-back" hadron pairs, $e^+e^- \rightarrow h_1h_2X$
 - product of fragmentation functions
 - allows for tagging of flavor, transverse-momentum, and/or polarization
- inclusive same-hemisphere hadron pairs, $e^+e^- \rightarrow h_1h_2X$
 - di-hadron fragmentation

the collinear case

- before 2013: lack of precision data at (moderately) high z and low Js
- Imits analysis of evolution and gluon fragmentation
- Imited information in kinematic region often used in semi-inclusive DIS

- before 2013: lack of precision data at (moderately) high z and low Js
- Imits analysis of evolution and gluon fragmentation
- Imited information in kinematic region often used in semi-inclusive DIS
- by now also results from BaBar, Belle, and BESIII:
 - BaBar Collaboration, PRD 88 (2013) 032011: π^{\pm} , K^{\pm}, p+p
 - Belle Collaboration, PRL 111 (2013) 062002: π^{\pm} , K[±]
 - Belle Collaboration, PRD 92 (2015) 092007 & 101 (2020) 092004: π±, K±, p+p

Gunar Schnell

IWHSS & CPHI 2024

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)</p>
- DEHSS fits [e.g., PRD91 (2015) 014035]
 - slight tension at low-z for BaBar and high-z for Belle

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- DEHSS fits [e.g., PRD91 (2015) 014035]
 - slight tension at low-z for BaBar and high-z for Belle
- Belle radiative corrections generally "undone" in FF fits

[EPJC 77 (2017) 516, NNFF1.0]

In the case of the BELLE experiment we multiply all data points by a factor 1/c, with c = 0.65 for charged pions and kaons [69] and with c a function of z for protons/antiprotons [53]. This correction is required in order to treat the BELLE data consistently with all the other SIA measurements included in NNFF1.0. The reason is that a kinematic cut on radiative photon events was applied to the BELLE data sample in the original analysis instead of unfolding the radiative QED effects. Specifically, the energy scales

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)</p>
- 2015 DEHSS fits [e.g., PRD91 (2015) 014035]
 - slight tension at low-z for BaBar and high-z for Belle
- Belle radiative corrections generally "undone" in FF fits
- data available for (anti)protons
 - similar z dependence as pions
 - about $\sim \frac{1}{5}$ of pion cross sections

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- 2015 DEHSS fits [e.g., PRD91 (2015) 014035]
 - slight tension at low-z for BaBar and high-z for Belle
- Belle radiative corrections generally "undone" in FF fits
- data available for (anti)protons
 - similar z dependence as pions
 - about $\sim \frac{1}{5}$ of pion cross sections
- Belle re-analysis presented in PRD 101 (2020) 092004

interlude about counting

cross sections are basically count rates

- "how to count?" sounds like a simple question, but the devil is in the details
 - what to do with hadrons that have (somewhere!) an ISR photon
 - In general, how to deal with events that are assigned to "wrong" kinematic bin due to [e.g., measured and true momentum might differ] instrumental effects
 - book-keeping of assigning event's contribution to bin's statistical uncertainty

cross sections are basically count rates

- "how to count?" sounds like a simple question, but the devil is in the details
 - what to do with hadrons that have (somewhere!) an ISR photon
 - In general, how to deal with events that are assigned to "wrong" kinematic bin due to instrumental effects [e.g., measured and true momentum might differ]
 - book-keeping of assigning event's contribution to bin's statistical uncertainty
- hadron yields also undergo series of other corrections:
 - [e.g., not every identified pion was a pion] particle (mis)identification
 - [e.g., two-photon processes, $\Upsilon \rightarrow BB$, ...] non-qq processes
 - " 4π " correction [e.g., selection criteria and limited geometric acceptance]

"optional": weak-decay removal Gunar Schnell

[e.g., "prompt fragmentation"]

- nothing! leave it to phenomenology to deal with QED corrections
 - however, (uncorrected/corrected) yields are ISR & detector dependent •
- reject all events that have an isolated photon?
 - detectors almost never fully hermetic, many ISR photons travel down the beam pipe
 - still fully inclusive reaction?
- use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than x% of total available energy (e.g., 0.5% as in earlier Belle analyses)
 - what is a reasonable choice for x?
 - ISR treatment model dependent, indeed depends on annihilation cross section
- use some Monte Carlo to estimate ratio of hadrons produced in absence of ISR vs. full QED+QCD simulation
 - again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)

- nothing! leave it to phenomenology to deal with QED corrections
 - however, (uncorrected/corrected) yields are ISR & detector dependent $\mathbf{\mathbf{O}}$
- reject all events that have an isolated photon?
 - detectors almost never fully hermetic, many ISR photons travel down the beam pipe
 - still fully inclusive reaction?
- use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than x% of total available energy (e.g., 0.5% as in earlier Belle analyses)
 - what is a reasonable choice for x?
 - ISR treatment model dependent, indeed depends on annihilation cross section
- use some Monte Carlo to estimate ratio of hadrons produced in absence of ISR vs. full QED+QCD simulation
 - again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)

- nothing! leave it to phenomenology to deal with QED corrections
 - however, (uncorrected/corrected) yields are ISR & detector dependent $\mathbf{\mathbf{O}}$
- reject all events that have an isolated photon?
 - detectors almost never fully hermetic, many ISR photons travel down the beam pipe
 - still fully inclusive reaction?
- use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than x% of total available energy (e.g., 0.5% as in earlier Belle analyses)
 - what is a reasonable choice for x?
 - ISR treatment model dependent, indeed depends on annihilation cross section
- use some Monte Carlo to estimate ratio of hadrons produced in absence of ISR vs. full QED+QCD simulation
 - again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)

- nothing! leave it to phenomenology to deal with QED corrections
 - however, (uncorrected/corrected) yields are ISR & detector dependent $\mathbf{\mathbf{C}}$
- reject all events that have an isolated photon?
 - detectors almost never fully hermetic, many ISR photons travel down the beam pipe
 - still fully inclusive reaction?
- use some Monte Carlo to estimate event fraction with an ISR photon that carries away more than x% of total available energy (e.g., 0.5% as in earlier Belle analyses)
 - what is a reasonable choice for x?
 - ISR treatment model dependent, indeed depends on annihilation cross section
- use some Monte Carlo to estimate ratio of hadrons produced in absence of ISR vs. full QED+QCD simulation
 - again model dependent: number of hadrons produced at given z for different s depends on differential cross section (e.g., from evolution)

ISR corrections - PRD 92 (2015) 092007

- (\equiv energy loss less than 0.5%)
 - large non-ISR fraction at large z, as otherwise not kinematically reachable (remember $z = E_h / 0.5 \int S_{nominal}$)

keep only fraction of the events -> strictly speaking not single-inclusive annihilation currently used constant 0.65 correction to undo ISR correction is not a constant vs. z Gunar Schnell IWHSS & CPHI 2024 15

relative fractions of hadrons as a function of z originating from ISR or non-ISR events

ISR corrections - PRD 101 (2020) 092004

• non-ISR / ISR fractions based on PYTHIA switch MSTP(11)

• PYTHIA model dependence; absorbed in systematics by variation of tunes

Gunar Schnell

comparison old&new Belle single-hadron cross sections

Gunar Schnell

comparison old&new Belle single-hadron cross sections

Gunar Schnell

updated analysis

comparison old&new Belle single-hadron cross sections

Gunar Schnell

[PRD 101 (2020) 092004]

updated analysis

single-hadron production: hyperons.

Gunar Schnell

single-hadron production: data-MC comparison

- pion and(?) kaon data reasonably well described by Jetset
- protons difficult to reproduce, especially at large z
 - MC overshoots data

talk by Valerio [PRD 104 (2021) 034007] d**MAPFF1.0** ($\mu = 5.0 \text{ GeV}$) U 4 MAPFF1.0 JAM20 DEHSS14 2

pion fragmentation functions: fit comparisons

- still large differences in FF fits
 - also in "SIDIS" region, where
 needed as flavor tagger

- **before 2022**: lack of precision data at low \sqrt{s}
 - even B factories somewhat troublesome due to large charm contribution

- before 2022: lack of precision data at low Js
 - even B factories somewhat troublesome due to large charm contribution
- by now also results from BESIII
 - PRL 130 (2023) 231901 & 133 (2024) 021901
- "challenge" to current FF parametrizations
 - somewhat surprising for neutral pions as easily related to charge-pion FFs

- **before 2022**: lack of precision data at low \sqrt{s}
 - even B factories somewhat troublesome due to large charm contribution
- by now also results from BESIII
 - PRL 130 (2023) 231901 & 133 (2024) 021901
- "challenge" to current FF parametrizations
 - somewhat surprising for neutral pions as easily related to charge-pion FFs
 - neutral-kaon FF related here to charged-kaon FFs as charge average

- **before 2022**: lack of precision data at low \sqrt{s}
 - even B factories somewhat troublesome due to large charm contribution
- by now also results from BESIII
 - PRL 130 (2023) 231901 & 133 (2024) 021901
- "challenge" to current FF parametrizations
 - somewhat surprising for neutral pions as easily related to charge-pion FFs
 - neutral-kaon FF related here to charged-kaon FFs as charge average

previous eta FF fit severely below BESIII data Gunar Schnell

25

FFs including higher twist

in view of poor description of BESIII data, include higher-twist in phenomenology much better description, but only SIA data

(see also M. Soleymaninia et al. <u>PRD 110 (2024) 014019</u>) Gunar Schnell

N S -~ 4 \mathbf{O} 4 N J

light-meson SIA data

• currently rather limited collection of SIA (and other!) data on eta production

Gunar Schnell

light-meson SIA data

• currently rather limited collection of SIA (and other!) data on eta production

new data from Belle to come out soon

Gunar Schnell

- single-hadron production has low discriminating power for parton flavor
 - can use 2nd hadron in opposite hemisphere to "tag" flavor, transverse momentum, as well as polarization
 - mainly sensitive to product of single-hadron FFs, e.g.,

$$\sigma^{e^+e^- \to h_1 h_2 X} \propto \sum_{q} e_q^2 \left(D_1^{q \to h_1} D_1^{\bar{q} \to h_2} + D_1^{\bar{q} \to h_1} D_1^{q \to h_2} \right)$$

hadron-pair production

 \mathbf{P}_{h_1}

Thrust axis $\hat{\mathbf{n}}$

- systematics-dominated over entire kinematic range
 - strongly asymmetric systematics
 - main contribution from Monte Carlo tune dependence

Sar WorS 2023

- systematics-dominated over entire kinematic range
- clear flavor dependence
 - suppression of kaons
 - suppression of like-sign pairs
 - more pronounced at large z (stronger flavor sensitivity)

Sar WorS 2023

- systematics-dominated over entire kinematic range
- clear flavor dependence
 - suppression of kaons
 - suppression of like-sign pairs
 - more pronounced at large z (stronger flavor sensitivity)

- systematics-dominated over entire kinematic range
- clear flavor dependence
 - suppression of kaons
 - suppression of like-sign pairs
 - more pronounced at large z (stronger flavor sensitivity)
- rich but currently still mainly unexplored set of data on flavor-dependence of FFs

[PRD 101 (2020) 092004]

inclusive hadrons - transverse momentum

- quasi-inclusive hadron production gives access to transverse momentum in fragmentation
- transverse momentum measured with respect to thrust axis n
- analysis performed differential in z & PhT, in various slices in thrust T (m 18x20x6 bins)
- correction steps similar as for P_{hT} -integrated cross sections
- Gaussian fits to transverse-momentum distribution provided for all hadrons in (z,T)-bins

 \mathbf{P}_h

 P_{hT}

thrust distribution: process contributions

- large contribution from BB at lower thrust
- large thrust dominated by uds and charm fragmentation

[Belle, PRD 99 (2019) 112006]

(at very large T significant τ contribution for pions, not visible here)

transverse-momentum distributions

- -> rather spherical events
- transverse momenta almost \mathbf{O} uniformly distributed in medium-z bins
- faster drop for heavier hadrons

[PRD

transverse-momentum distributions

• 0.95<T<1.0

- transverse momenta mostly \bigcirc Gaussian distributed
- widths very narrow as particles now very collimated

Gunar Schnell

transverse-momentum: Gaussian widths

- fit Gaussian to low-Pht data
- Gaussian widths depend on z and T
 - general increase with z with turnover at larger values of z
 - clear decrease of widths with increase of T
 - particles more and more collimated

PRD

[PRD

polarization effects despite unpolarized initial & states

- polarization -> Collins fragmentation functions
 - RFO: one hadron as reference axis $\rightarrow cos(2\phi_0)$ modulation
 - RF12: thrust (or similar) axis $\rightarrow cos(\phi_1 + \phi_2)$ modulation

• angular correlations between nearly back-to-back hadrons used to tag transverse quark

- ivolutions over transverse momenta
- 'ect" thrust axis to qq axis

challenge: large modulations even without Collins effect (e.g., in PYTHIA MC)

- challenge: large modulations even without Collins effect (e.g., in PYTHIA MC)
- construct double ratio of normalized-yield distributions R₁₂, e.g. unlike-/like-sign:

$$\frac{R_{12}^U}{R_{12}^L} \simeq \frac{1 + \langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \rangle G^U \cos(\phi_1 + \phi_2)}{1 + \langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \rangle G^L \cos(\phi_1 + \phi_2)}$$
$$\simeq 1 + \left\langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \right\rangle \{G^U - G^L\} \cos(\phi$$

- suppresses flavor-independent sources of modulations
- GU/L: specific combinations of FFs
- remaining MC asymmetries **systematics**

Gunar Schnell

 $(\phi_1 + \phi_2)$

- challenge: large modulations even without Collins effect (e.g., in PYTHIA MC)
- construct double ratio of normalized-yield distributions R₁₂, e.g. unlike-/like-sign:

$$\frac{R_{12}^U}{R_{12}^L} \simeq \frac{1 + \langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \rangle G^U \cos(\phi_1 + \phi_2)}{1 + \langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \rangle G^L \cos(\phi_1 + \phi_2)}$$
$$\simeq 1 + \left\langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \right\rangle \{G^U - G^L\} \cos(\phi$$

- suppresses flavor-independent sources of modulations
- GU/L: specific combinations of FFs
- remaining MC asymmetries **systematics**

Gunar Schnell

 $(\phi_1 + \phi_2)$

- first measurement of Collins asymmetries by Belle [PRL 96 (2006) 232002, PRD 78 (2008) 032011, PRD 86 (2012) 039905(E)]
 - significant asymmetries rising with z
 - used for first transversity and Collins FF extractions

Gunar Schnell

BaBar results [PRD 90 (2014) 052003] consistent with Belle

Gunar Schnell

0.9 A=0.05 \pm 0.01, B=1.00 \pm 0.01, χ^2 /ndf=1.1 BESIII [PRL 116 (2016)] consistent with TMD eve PRD 93 (2016) 014009] A=0.18 \pm 0.03, B=1.02 \pm 0.02, χ^2 /ndf=1.2 Gunar Schnell 0.5 -2

Collins asymmetries - going further

 p_T dependence for charged pions from BaBar & BESIII • typical rise with p_T ; turnover around 0.8 GeV

arXiv:1507.06824

Collins asymmetries - going further

& CPHI 2024
• ... as well as for neutral pion and eta

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} = \frac{\pi^{0}\pi^{+} + \pi^{0}\pi^{-}}{\pi^{+}\pi^{+} + \pi^{-}\pi^{-}}$$
$$R_{12}^{\eta} = \frac{R_{12}^{\eta\pm}}{R_{12}^{L}} = \frac{\eta\pi^{+} + \eta\pi^{-}}{\pi^{+}\pi^{+} + \pi^{-}\pi^{-}}$$

no significant differences observed

Gunar Schnell

 A_{12}

 A_{12}

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} \approx 1 + \cos(\phi_{12}) \frac{\sin^{2}(\theta)}{1 + \cos^{2}(\theta)}$$

$$\times \left\{ \frac{5(H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) \otimes (H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) + 4H_{1,s-}^{\perp,dis}}{5(D_{1}^{fav} + D_{1}^{dis}) \otimes (D_{1}^{fav} + D_{1}^{dis}) + 4D_{1,s\to\pi}^{dis} \otimes H_{1,s\to\pi}^{\perp,dis}} - \frac{5(H_{1}^{\perp,fav} \otimes H_{1}^{\perp,dis} + H_{1}^{\perp,dis} \otimes H_{1}^{\perp,fav}) + 2H_{1,s\to\pi}^{\perp,dis}}{5(D_{1}^{fav} \otimes D_{1}^{dis} + D_{1}^{dis} \otimes D_{1}^{fav}) + 2D_{1,s\to\pi}^{dis} \otimes D_{1}^{dis}} \otimes D_{1}^{fav}} \right\}$$

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} \approx 1 + \cos \left\{ \frac{5(H_{1}^{\perp,fav} + H_{1})}{5(D_{1}^{fav} + I_{1})} - \frac{5(H_{1}^{\perp,fav} \otimes H_{1}^{\perp,dis} + H_{1}^{\perp,dis} \otimes H_{1}^{\perp,fav}) + 2H_{1,s \to \pi}^{\perp,dis}}{5(D_{1}^{fav} \otimes D_{1}^{dis} + D_{1}^{dis} \otimes D_{1}^{fav}) + 2D_{1,s \to \pi}^{dis} \otimes D_{1}^{dis}} \otimes D_{1}^{fav}} \right\}$$

- consistency between neutral and charged pions
 - typical rise with z also seen for neutral pions

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} \approx 1 + \cos(\phi_{12}) \frac{\sin^{2}(\theta)}{1 + \cos^{2}(\theta)}$$

$$\times \left\{ \frac{5(H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) \otimes (H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) + 4H_{1,s-}^{\perp,dis}}{5(D_{1}^{fav} + D_{1}^{dis}) \otimes (D_{1}^{fav} + D_{1}^{dis}) + 4D_{1,s\to\pi}^{dis} \otimes H_{1,s\to\pi}^{\perp,dis}} - \frac{5(H_{1}^{\perp,fav} \otimes H_{1}^{\perp,dis} + H_{1}^{\perp,dis} \otimes H_{1}^{\perp,fav}) + 2H_{1,s\to\pi}^{\perp,dis}}{5(D_{1}^{fav} \otimes D_{1}^{dis} + D_{1}^{dis} \otimes D_{1}^{fav}) + 2D_{1,s\to\pi}^{dis} \otimes D_{1}^{dis}} \otimes D_{1}^{fav}} \right\}$$

[PRD 100 (2019) 92008]

Gunar Schnell

- consistency between neutral and charged pions
 - typical rise with z also seen for neutral pions
 - ... while basically flat for eta

$$\begin{split} R_{12}^{\pi^{0}} &= \frac{R_{12}^{0\pm}}{R_{12}^{L}} \approx 1 + \cos(\phi_{12}) \frac{\sin^{2}(\theta)}{1 + \cos^{2}(\theta)} \\ &\times \bigg\{ \frac{5(H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) \otimes (H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) + 4H_{1,s \to \pi}^{\perp,dis} \otimes H_{1,s \to \pi}^{\perp,dis}}{5(D_{1}^{fav} + D_{1}^{dis}) \otimes (D_{1}^{fav} + D_{1}^{dis}) + 4D_{1,s \to \pi}^{dis} \otimes D_{1,s \to \pi}^{dis})} \\ &- \frac{5(H_{1}^{\perp,fav} \otimes H_{1}^{\perp,dis} + H_{1}^{\perp,dis} \otimes H_{1}^{\perp,fav}) + 2H_{1,s \to \pi}^{\perp,dis} H_{1,s \to \pi}^{\perp,dis}}{5(D_{1}^{fav} \otimes D_{1}^{dis} + D_{1}^{dis} \otimes D_{1}^{fav}) + 2D_{1,s \to \pi}^{dis} \otimes D_{1,s \to \pi}^{dis}} \bigg\}. \end{split}$$

• non-zero π^0 or η results not direct sign of non-zero π^0 or η Collins FFs

Gunar Schnell

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} \approx 1 + \cos(\phi_{12}) \frac{\sin^{2}(\theta)}{1 + \cos^{2}(\theta)}$$

$$\times \left\{ \frac{5(H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) \otimes (H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) + 4H_{1,s-}^{\perp,dis}}{5(D_{1}^{fav} + D_{1}^{dis}) \otimes (D_{1}^{fav} + D_{1}^{dis}) + 4D_{1,s\to\pi}^{dis} \otimes H_{1,s\to\pi}^{\perp,dis}} - \frac{5(H_{1}^{\perp,fav} \otimes H_{1}^{\perp,dis} + H_{1}^{\perp,dis} \otimes H_{1}^{\perp,fav}) + 2H_{1,s\to\pi}^{\perp,dis}}{5(D_{1}^{fav} \otimes D_{1}^{dis} + D_{1}^{dis} \otimes D_{1}^{fav}) + 2D_{1,s\to\pi}^{dis} \otimes D_{1}^{dis}} \otimes D_{1}^{fav}} \right\}$$

• non-zero π^0 or η results not direct sign of non-zero π^0 or η Collins FFs

double ratio dominated by terms involving charged-pion yields

Gunar Schnell

 $\begin{cases} \frac{dis}{s \to \pi} \otimes H_{1,s \to \pi}^{\perp,dis} \\ \otimes D_{1,s \to \pi}^{dis} \\ \frac{dis}{D_{1,s \to \pi}^{\perp,dis}} \\ \frac{dis}{D_{1,s \to \pi}^{dis}} \end{cases} \\ \end{cases}$ contribution from charged pions

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} \approx 1 + \cos(\phi_{12}) \frac{\sin^{2}(\theta)}{1 + \cos^{2}(\theta)}$$

$$\times \left\{ \frac{5(H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) \otimes (H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) + 4H_{1,s-}^{\perp,dis}}{5(D_{1}^{fav} + D_{1}^{dis}) \otimes (D_{1}^{fav} + D_{1}^{dis}) + 4D_{1,s\to\pi}^{dis} \otimes H_{1,s\to\pi}^{\perp,dis}} - \frac{5(H_{1}^{\perp,fav} \otimes H_{1}^{\perp,dis} + H_{1}^{\perp,dis} \otimes H_{1}^{\perp,fav}) + 2H_{1,s\to\pi}^{\perp,dis}}{5(D_{1}^{fav} \otimes D_{1}^{dis} + D_{1}^{dis} \otimes D_{1}^{fav}) + 2D_{1,s\to\pi}^{dis} \otimes D_{1}^{dis}} \otimes D_{1}^{fav}} \right\}$$

- non-zero π^0 or η results not direct sign of non-zero π^0 or η Collins FFs
 - double ratio dominated by terms involving charged-pion yields
 - only numerator of first term related to π^0 or η

$$R_{12}^{\pi^{0}} = \frac{R_{12}^{0\pm}}{R_{12}^{L}} \approx 1 + \cos(\phi_{12}) \frac{\sin^{2}(\theta)}{1 + \cos^{2}(\theta)}$$

$$\times \left\{ \frac{5(H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) \otimes (H_{1}^{\perp,fav} + H_{1}^{\perp,dis}) + 4H_{1,s-}^{\perp,dis}}{5(D_{1}^{fav} + D_{1}^{dis}) \otimes (D_{1}^{fav} + D_{1}^{dis}) + 4D_{1,s\to\pi}^{dis} \otimes H_{1,s\to\pi}^{\perp,dis}} - \frac{5(H_{1}^{\perp,fav} \otimes H_{1}^{\perp,dis} + H_{1}^{\perp,dis} \otimes H_{1}^{\perp,fav}) + 2H_{1,s\to\pi}^{\perp,dis}}{5(D_{1}^{fav} \otimes D_{1}^{dis} + D_{1}^{dis} \otimes D_{1}^{fav}) + 2D_{1,s\to\pi}^{dis} \otimes D_{1}^{dis}} \otimes D_{1}^{fav}} \right\}$$

- non-zero π^0 or η results not direct sign of non-zero π^0 or η Collins FFs
 - double ratio dominated by terms involving charged-pion yields
 - only numerator of first term related to π^0 or η

• non-zero results could, in principle, arise entirely from charged-pion Collins FFs

- several analyses still in the pipeline, e.g.,
 - k_T -dependent D₁ FFs (back-to-back hadrons) (Belle, BESIII & possibly BaBar)
 - Collins asymmetries:
 - pion update w/ increased statistics (BESIII)
 - kaon & pion-kaon pairs; k_T dependence of Collins asymmetries (Belle, BESIII)
 - Collins asymmetries w/o double ratios (BaBar)
 - single-hadron production
 - short-lived mesons and resonances (Belle)
 - charged pions and kaon at lower s (BESIII)

- several analyses still in the pipeline, e.g.,
 - k_T -dependent D_1 FFs (back-to-back hadrons) (Belle, BESIII & possibly BaBar)
 - Collins asymmetries:
 - pion update w/ increased statistics (BESIII)
 - kaon & pion-kaon pairs; k_T dependence of Collins asymmetries (Belle, BESIII)
 - Collins asymmetries w/o double ratios (BaBar)
 - single-hadron production
 - short-lived mesons and resonances (Belle)
 - charged pions and kaon at lower s (BESIII)

[PRD 104 (2021) 034007 Q [GeV SIA SIDIS Not fitted 10^{-2} 10^{-1}

- several analyses still in the pipeline, e.g.,
 - k_T -dependent D_1 FFs (back-to-back hadrons) (Belle, BESIII & possibly BaBar)
 - Collins asymmetries:
 - pion update w/ increased statistics (BESIII)
 - kaon & pion-kaon pairs; k_T dependence of Collins asymmetries (Belle, BESIII)
 - Collins asymmetries w/o double ratios (BaBar)
 - single-hadron production
 - short-lived mesons and resonances (Belle)

[PRD 104 (2021) 034007 **D D D D** SIA SIDIS Not fitted 10^{-2} 10

BESIII region • charged pions and kaon at lower s (BESIII) ~62pb⁻¹ @3.52 GeV used for Collins asym's aim at 250pb⁻¹ data set

- several analyses still in the pipeline, e.g.,
 - k_T -dependent D_1 FFs (back-to-back hadrons) (Belle, BESIII & possibly BaBar)
 - Collins asymmetries:
 - pion update w/ increased statistics (BESIII)
 - kaon & pion-kaon pairs; k_T dependence of Collins asymmetries (Belle, BESIII)
 - Collins asymmetries w/o double ratios (BaBar)
 - single-hadron production
 - short-lived mesons and resonances (Belle)
- new data from Belle II

Gunar Schnell

[PRD 104 (2021) 034007 **D D D D** SIA SIDIS Not fitted 10^{-2} 10

BESIII region • charged pions and kaon at lower s (BESIII) ~62pb⁻¹ @3.52 GeV used for Collins asym's aim at 250pb⁻¹ data set

Updated on 2024/07/01 09:43 JST

similar data sample as at 1st-generation B-factories "soonish"

backup slides

Collins asymmetries - differences w.r.t. old analysis

- qualitative changes in 2019 Belle analysis w.r.t. previous Belle analyses:
 - no correction to qq axis;
 - upper limit on opening angle imposed
 - no correction for charm contribution; provide charm fraction

polarizing fragmentation

- Iarge hyperon polarization in unpolarized hadron collision observed
- ... as well as in inclusive lepto-production
- caused by polarizing FF?

polarizing fragmentation function

polarization measured normal to production plane, i.e. \propto ("P_a" × P_A)

reference axis to define transverse momentum:

"hadron frame" - use momentum direction of "back-to-back" hadron

"thrust frame" - use thrust axis

exploit self-analyzing weak decay of Λ to determine polarization Gunar Schnell

53

polarizing fragmentation function

flavor tagging through hadrons in opposite hemisphere:

> Iarge-z_h hadrons tag quark flavor more efficiently

enlarges differences between oppositely charged hadrons

 $\sqrt{s}/2$