Drell-Yan at NLO in the Parton Branching Method

Louis Moureaux

Hamburg University, CMS

IWHSS-CPHI 2024 Yerevan, Armenia 01.10.2024 Special thanks to Gregor Kasieczka, Francesco Hautmann, and Laurent Favart

SPONSORED BY THE

Federal Ministry of Education and Research

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Drell-Yan

Z boson: important particle at the LHC

- Color singlet: facilitates theory
- Easy experimental signature with leptonic decay
- Rich platform for QCD in the initial state
- **TMD effects** in $p_T(Z)$ distribution

Parton Branching TMDs

Idea: k_T accumulates through repeated parton branchings

- Start at a small scale and evolve
- Branchings governed by scale evolution
- Every branching generates some k_{T}
- Non-resolvable branchings: Sudakov form factors

Related to CSS formalism:

- More in <u>PoS EPS-HEP2023 (2024) 270</u>

JHEP 01 (2018) 070

Intrinsic k_T

Parton k_{T} distribution at small scale

- Present in all formalisms
- In TMDs: identified with the parton "orbital momentum"

No predictions:

- Extracted from data
- Usually simple Gaussian
- Major unknown: width of this distribution
- Tuned from data

Website; manual: EPJ C 81, 425 (2021)

CASCADE generates a full hadron event record according to the HEP common standards.

- Full TMD initial-state shower (with TMDlib 2103.09741)
- Pythia final-state shower
- e-p and p-p initial states
- On/off-shell matrix elements
- Arbitrary processes via LHE files
- Multileg via TMD merging <u>JHEP 09 (2022) 060</u>

Essential for experiments!

Showcase: Z + jets

CASCADE with TMD merging

- Compared to ATLAS data
 [EPJ C 77 (2017) 361]
- 0–3 jets in matrix element
- Excellent agreement up to 7 (!) jets

Transverse momentum

CMS compared their Z p_T measurement to CASCADE

- Five Q² intervals
- No prediction at high p_{T} (expected)
- Low- p_T behavior could be improved
- \Rightarrow Fit the TMD model

Intrinsic k_T determination

Low- p_T DY data is sensitive to the quark k_T distributions

In PB TMD:

- Gaussian distribution at $\mu_0 = 1 \text{ GeV}$
- Width given by $\sigma = q_s / \sqrt{2}$
- Evolved to the scale of interest

CMS data sensitivity

8

Input data

CMS results from <u>EPJ C 83 (2023) 628</u>:

- $d\sigma/dp_T(Z) dQ^2$ in five Q^2 bins
- Sensitive to QED FSR
- Detailed systematics & correlations

Correlation matrix for bins used in the fit

Fitting procedure

Code for combined χ^2

Using the first few p_T bins in each Q^2 bin

Minimize a joint χ^2 statistic with all bins

$$\chi^{2} = \sum_{i,k} (m_{i} - \mu_{i}) C_{ik}^{-1} (m_{k} - \mu_{k})$$

C_{ik} includes measurement & prediction errors

Fit result at \sqrt{s} = 13 TeV:

 $q_{\rm s}$ = 1.04 ± 0.08 GeV

Other experiments

Fitted Drell-Yan measurements at different \sqrt{s} with consistent results

Scaling

CMS suggests a scaling of q_s w.r.t. \sqrt{s}

- Observed for Herwig and Pythia
- Our PB TMD fit is much more stable

Why?

Impact of q_0

Experiment to understand the effect:

- Increase minimum branching scale q₀ in PB TMD (neglecting soft gluons < q₀)
- Extract q_s vs \sqrt{s} dependence
- Recovers the *q*_s scaling seen by CMS!

Discussion

Increasing q_0 leads to \sqrt{s} dependence for intrinsic k_{T}

- Corresponds to making more branchings non-resolvable
- Thus making the non-perturbative Sudakov FF more important

Non-resolvable Sudakov FF \rightleftharpoons Collins-Soper kernels are essential for evolution, with measurable effects in high-energy DY data

Neglecting them leads to artificial constrains on intrinsic k_{T} and \sqrt{s} dependence

 $k_{T,a} \qquad \mu$ μ_1 $k_{T,b} \qquad q_{T,c}$

 $k_T = k_{T,0} + \sum_{c} q_{T,c}$

Summary

Parton Branching TMDs

- Implemented in the CASCADE general-purpose MC
- Successful description of LHC data

Extracted the "intrinsic k_{T} " parameter

- Mild \sqrt{s} dependence observed
- Much less than parton showers $m \ref{eq:matrix}$

Thank you