Drell-Yan at NLO in the Parton Branching Method

Louis Moureaux

Hamburg University, CMS

IWHSS-CPHI 2024 Yerevan, Armenia 01.10.2024

Special thanks to Gregor Kasieczka, Francesco Hautmann, and Laurent Favart

SPONSORED BY THE

Federal Ministry of Education and Research

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Drell-Yan

Z boson: important particle at the LHC

- Color singlet: facilitates theory
- Easy experimental signature with leptonic decay
- Rich platform for QCD in the initial state
- TMD effects in $p_T(Z)$ distribution

Parton Branching TMDs [JHEP 01 \(2018\) 070](https://doi.org/10.1007/JHEP01(2018)070)

- **Start at a small scale and evolve**
- Branchings governed by scale evolution
- \cdot Every branching generates some k_T
- Non-resolvable branchings: Sudakov form factors

Related to CSS formalism:

- Non-resolvable Sudakov FF \rightleftarrows Collins-Soper kernel
- More in [PoS EPS-HEP2023 \(2024\) 270](https://pos.sissa.it/449/270)

Intrinsic k_T

Parton k_T distribution at small scale

- Present in all formalisms
- In TMDs: identified with the parton "orbital momentum"

No predictions:

- Extracted from data
- Usually simple Gaussian
- Major unknown: width of this distribution
- Tuned from data

CASCADE 3 [Website;](https://cascade.hepforge.org/) manual: [EPJ C 81, 425 \(2021\)](https://link.springer.com/article/10.1140/epjc/s10052-021-09203-8)

CASCADE generates a full hadron event record according to the HEP common standards.

- Full TMD initial-state shower (with TMDlib [2103.09741](https://arxiv.org/abs/2103.09741))
- Pythia final-state shower
- e -p and p -p initial states
- On/off-shell matrix elements
- Arbitrary processes via LHE files
- Multileg via TMD merging [JHEP 09 \(2022\) 060](https://doi.org/10.1007/JHEP09(2022)060)

Essential for experiments!

Showcase: Z + jets

CASCADE with TMD merging

- Compared to ATLAS data [\[EPJ C 77 \(2017\) 361\]](https://doi.org/10.1140/epjc/s10052-017-4900-z)
- \cdot 0–3 jets in matrix element
- Excellent agreement up to 7 (!) jets

Transverse momentum

CMS compared their $Z p_T$ measurement to CASCADE

- Five *Q*² intervals
- No prediction at high p_T (expected)
- Low- p_T behavior could be improved
- ⇒ Fit the TMD model

Intrinsic k_T determination

Low- p_T DY data is sensitive to the quark k_T distributions

In PB TMD:

- Gaussian distribution at μ_0 = 1 GeV
- Width given by $\sigma = q_s / \sqrt{2}$
- Evolved to the scale of interest

CMS data sensitivity

8

CMS results from [EPJ C 83 \(2023\) 628:](https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-20-003/index.html)

- d σ /d p_T (Z) dQ² in five Q^2 bins
- Sensitive to QED FSR
- Detailed [systematics & correlations](https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-20-003/index.html#AddMat)

Correlation matrix for bins used in the fit

Fitting procedure

[Code for combined χ²](https://github.com/lmoureaux/CovarianceFits)

Using the first few p_T bins in each $Q²$ bin

Minimize a joint χ^2 statistic with all bins

$$
\chi^{2} = \sum_{i,k} (m_{i} - \mu_{i}) C_{ik}^{-1} (m_{k} - \mu_{k})
$$

Cik includes measurement & prediction errors

Fit result at \sqrt{s} = 13 TeV:

*q*s = 1.04 ± 0.08 GeV

Other experiments

Fitted Drell-Yan measurements at different √*s* with consistent results

Scaling

CMS suggests a scaling of *q*s w.r.t. √*s*

- Observed for Herwig and Pythia
- Our PB TMD fit is much more stable

Why?

Impact of q_0

Experiment to understand the effect:

- Increase minimum branching scale *q*0 in PB TMD (neglecting soft gluons $\langle q_0 \rangle$
- Extract *q*s vs √*s* dependence
- Recovers the q_s scaling seen by CMS!

Discussion

Increasing q_0 leads to \sqrt{s} dependence for intrinsic k_T

- Corresponds to making more branchings non-resolvable
- Thus making the non-perturbative Sudakov FF more important

Non-resolvable Sudakov FF \rightleftarrows Collins-Soper kernels are essential for evolution, with measurable effects in high-energy DY data

Neglecting them leads to artificial constrains on intrinsic k_T and \sqrt{s} dependence

 $k_{T,a}$ $\sum_{k=1}^{\infty} \mu_1$
 $k_{T,b}$ $\left\{ \begin{array}{c} q_{T,c} \\ q_{T,c} \\ q_{T,c} \end{array} \right\}$

 $k_T = k_{T,0} + \sum_{c} q_{T,c}$

Summary

Parton Branching TMDs

- Implemented in the CASCADE general-purpose MC
- Successful description of LHC data

Extracted the "intrinsic k_T " parameter $q_s = 1.04 \pm 0.08$ GeV

- Mild √*s* dependence observed
- Much less than parton showers $\mathcal O$
- Governed by non-resolvable Sudakov FF \rightleftarrows Collins-Soper kernel in evolution

Thank you