Baryon spectroscopy at GlueX

IWHSS - CPHI workshop

Farah Afzal for the GlueX Collaboration

02.10.2024

University of Bonn

Motivation - baryon spectroscopy

- Goal: Study excited states
 (N*, Δ*, Λ*, Σ*, Ξ*, Ω*) and properties
- More states expected than have been found so far!
 - Do these states exist?
 - Is SU(6)×O(3)-symmetry realized?
 - At least 23 missing Σ^{\ast}
- What is the nature of the observed states, e.g. $\Lambda(1405)$ two-pole structure

PDG2021:"...the field $(\Lambda^*, \Sigma^*, \Xi^*, \Omega^*)$ is starved for data ...

GlueX experiment probes hadron spectrum using photo-induced reactions

 \rightarrow covers large mass range up to bound charmonium states (E_{γ} : 6.5 – 11.4 GeV)!

Ν	(D, L_N^P)	S	J^{P}	Octet Members				Singlets	
0	$(56, 0^+_0)$	1/2	1/2+	N(939)	****	A(1116)	Σ(1193)	E(1318)	-
1	$(70, 1_1^-)$	1/2	$1/2^{-}$	N(1535)	****	A(1670)	$\Sigma(1620)$	$\Xi(1690)$	A(1405)
			3/2-	N(1520)	****	A(1690)	$\Sigma(1670)$	Ξ (1820)	A(1520)
		3/2	$1/2^{-}$	N(1650)	* * * *	A(1800)	$\Sigma(1750)$		-
			3/2-	N(1700)	* * *	1			-
			5/2-	N(1675)	* * * *	A(1830)	$\Sigma(1775)$		-
2	$(56, 0^+_2)$	1/2	$1/2^+$	N(1440)	* * * *	A(1600)	$\Sigma(1660)$		-
	$(70, 0^+_2)$	1/2	$1/2^+$	N(1710)	* * * •	$\Lambda(1810)^{\dagger}$	$\Sigma(1770)^{\dagger}$		
		3/2	$3/2^+$			1			-
	$(56, 2^+_2)$	1/2	$3/2^+$	$N(1720)^{\dagger}$	* * * *	$\Lambda(1890)^{\dagger}$	$\Sigma(1840)^{\dagger}$		-
			$5/2^+$	N(1680)	* * * *	$\Lambda(1820)^{\dagger}$	$\Sigma(1915)^{\dagger}$		-
	$(70, 2^+_2)$	1/2	$3/2^+$						
			5/2+	N(1860)	**				
		3/2	$1/2^+$	N(1880)	***			-	
			$3/2^+$	$N(1900)^{\dagger}$	* * • •		$\Sigma(2080)^{\dagger}$		-
			$5/2^+$	N(2000)	* *	$\Lambda(2110)^{\dagger}$	$\Sigma(2070)^{\dagger}$		-
			$7/2^+$	N(1990)	* *	A(2020)	$\Sigma(2030)^{\dagger}$		-
	$(20, 1^+_2)$	1/2	$1/2^+$	$N(2100)^{\dagger}$					
			$3/2^+$	$N(2040)^{\dagger}$					
			5/2+	-		-	-	-	
3	$(56, 1_3^-)$	1/2	1/2-	$N(1895)^{\dagger}$					-
			3/2-	$N(1875)^{\dagger}$			$\Sigma(1940)^{\dagger}$		_
	$(70, 1_{2}^{-})$		´	5 x					
	$(70, 1_{3}^{-})$			5 x					-
	$(20, 1_{2}^{-})$	1/2		2 x					-
	$(70, 2_{3}^{-})$			6 x					-
	$(56, 3^3)$	1/2		2 x					-
	$(70, 3^{-}_{3})$	1/2	7/2-	$N(2190)^{\dagger}$	* * * *	$\Lambda(2100)^{\dagger}$			
		3/2	9/2-	N(2250)	* * * *				V Crody
	$(20, 3^{-}_{3})$	1/2		2 x					v. Crea
4			9/2+	N(2220)	****	A(2350)			
5			11/2-	N(2600)	***				
	1	1		1 1 1			1	1	11

1

The GlueX experiment at CEBAF (JLab)

UNIVERSITÄT BONN

Experiment is optimized for light meson spectroscopy \rightarrow see talk by J. Stevens

- Coherent Bremsstrahlung on diamond radiator
- Beam intensity: $1-5 \times 10^7 \gamma/s$ in peak
- GlueX Phase-I completed ($\int L = 125 \text{ pb}^{-1}$ in coherent peak), Phase-II: ongoing, 3-4 imes Phase-I data

Analyzing decay angles of $\Delta^{++} o p\pi^+$ gives access to Spin-density matrix elements!

Study of exchange mechanism with SDMEs in $\gamma p \to \pi^- \Delta^{++} \to \pi^- \pi^+ p$

- Spin-density matrix elements (SDMEs) ρ_{ij}^k describe full angular distribution of Δ^{++} production and decay
- Linearly polarized beam provides access to nine linearly independent SDMEs

$$W(\theta,\varphi,\Phi) = \frac{3}{4\pi} (\rho_{33}^0 \sin^2 \theta + \rho_{11}^0 \left(\frac{1}{3} + \cos^2 \theta\right) - \frac{2}{\sqrt{3}} Re[\rho_{31}^0 \cos \varphi \sin 2\theta + \rho_{3-1}^0 \cos 2\varphi \sin^2 \theta] - P_\gamma \cos 2\Phi \left[\rho_{33}^1 \sin^2 \theta + \rho_{11}^1 \left(\frac{1}{3} + \cos^2 \theta\right) - \frac{2}{\sqrt{3}} Re[\rho_{31}^1 \cos \varphi \sin 2\theta + \rho_{3-1}^1 \cos 2\varphi \sin^2 \theta] \right] - P_\gamma \sin 2\Phi \frac{2}{\sqrt{3}} Im[\rho_{31}^2 \sin \varphi \sin 2\theta + \rho_{3-1}^2 \sin 2\varphi \sin^2 \theta]]$$

F. Afzal et. al. (GlueX), arXiv:2406.12829

Spin-Density Matrix Elements in Δ^{++} production

- First precise determination of the *t*-dependence of the $\Delta^{++}(1232)$ SDMEs
- Data provide important constraints on the Regge-theory models
- Relative sign ambiguity of two helicity amplitude couplings in the JPAC model can be resolved with GlueX data

Spin-Density Matrix Elements in Δ^{++} production

- First precise determination of the *t*-dependence of the $\Delta^{++}(1232)$ SDMEs
- Data provide important constraints on the Regge-theory models
- Relative sign ambiguity of two helicity amplitude couplings in the JPAC model can be resolved with GlueX data

Spin-Density Matrix Elements in Δ^{++} production

- First precise determination of the *t*-dependence of the $\Delta^{++}(1232)$ SDMEs
- Data provide important constraints on the Regge-theory models
- Relative sign ambiguity of two helicity amplitude couplings in the JPAC model can be resolved with GlueX data

Charge exchange mechanism - $\pi^- \Delta^{++}$

- Separation of unnatural-parity (U) and natural-parity (N) exchanges $\rho_{ij}^{N/U}=\rho_{ij}^0\pm\rho_{ij}^1$

- JPAC model: π (a₂) is the dominant unnatural (natural) exchange
- Important for charge-exchange reactions e.g. $\gamma p \to \eta' \pi \Delta^{++}$

Strangeness Photoproduction at GlueX

What is the nature of the $\Lambda(1405)$?

- It is too low in mass for the quark model
- Close to $N\bar{K}$ mass threshold molecular/pentaquark nature?
- Chiral unitary models, CPT, LQCD (& others) predict two I = 0 states in $\Lambda(1405)$ mass range, one close to the $N\bar{K}$ and the other close to the $\pi\Sigma$ thresholds

T. Hyodo and D. Jido, Prog.Part.Nucl.Phys. 67 (2012), 55-98

M. Mai, Eur.Phys.J.ST 230 (2021) 6, 1593-1607

Strangeness photoproduction at GlueX - $\Lambda(1405)$

GlueX has world's best data set to study $\Lambda(1405)$ cleanly in photoproduction reactions:

 $\gamma p
ightarrow K^+ \Sigma^0 \pi^0$ and also $\gamma p
ightarrow K^+ p K^-$

 \rightarrow Allows to perform K-matrix fit to both final states together for the first time

$\mathbf{\Sigma}^{0}\pi^{0}$

- Clean detection of $\Lambda(1405)$ and $\Lambda(1520)$
- pK^- threshold effect is visible
- Average mass resolution 7.8 MeV

pK[−]

- $\Lambda(1405)$ tails cause pK^- turn-on at threshold
- $\Lambda(1520)$ sits on top of $\Lambda(1405)$ tails
- Average mass resolution 2 MeV

Two pole structure of $\Lambda(1405)$?

9

Two-pole ansatz

- Rescale pK^- using PDG branching and isospin factors of $\Lambda(1520)$ to match the $\Sigma^0 \pi^0$ scale
- K-matrix fits performed with two-pole ansatz and single-pole ansatz for Λ(1405)
- Fit results with two-pole ansatz:
 - Solid: fit to the data
 - Dashed: $\Sigma^0 \pi^0$ each A,B resonance separately; pK^- - coherent tail of $\Lambda(1405)_{A,B}$ states
- Fit results with two-pole ansatz are superior!
- GlueX (preliminary) Λ (1520): (1516.5 \pm 0.3) $-i(8.3 \pm 0.1)$ MeV \rightarrow Good agreement with PDG

Two pole structure of $\Lambda(1405)$?

One-pole ansatz

- Rescale pK^- using PDG branching and isospin factors of $\Lambda(1520)$ to match the $\Sigma^0 \pi^0$ scale
- K-matrix fits performed with two-pole ansatz and single-pole ansatz for Λ(1405)
- Fit results with one-pole ansatz:
 - Solid: fit to the data
 - Dashed: $\Sigma^0 \pi^0$ single $\Lambda(1405)$ resonance; pK^- - coherent tail of $\Lambda(1405)$ state
- Fit results with two-pole ansatz are superior!
- GlueX (preliminary) A(1520): (1516.5 \pm 0.3) - *i*(8.3 \pm 0.1) MeV \rightarrow Good agreement with PDG

9

First step towards mapping the Cascade excitation spectrum and identifying possible intermediate hyperons Y^*

First step towards mapping the Cascade excitation spectrum and identifying possible intermediate hyperons Y^*

Strong evidence for $\Xi(1690)^-$, $\Xi(1820)^-$ in GlueX photoproduction data!

 J/ψ Photoproduction at GlueX

 $\gamma p
ightarrow p ~~J/\psi
ightarrow p ~~e^+e^-$

- First measurement: $469 \pm 22 \; J/\psi$'s (GlueX, PRL 123 (2019) 7, 072001)
- Updated measurement: Full GlueX-I data: 2270 \pm 58 J/ψ 's (GlueX, PRC 108, 025201 (2023))
- J/ψ production near threshold ($E_{\gamma}=8.2$ - 11.8 GeV)
 - \rightarrow probe of proton structure, search for
 - P_c resonances, etc.

J/ψ Photoproduction at GlueX - Differential and total cross section

- $d\sigma/dt$ sensitive to proton gluonic form factors under certain assumptions
- Good agreement between GlueX and $J/\psi-$ 007 (Hall C, JLab)
- Interesting enhancement at large -t for low energy

J/ψ Photoproduction at GlueX - Differential and total cross section

- $d\sigma/dt$ sensitive to proton gluonic form factors under certain assumptions
- Good agreement between GlueX and $J/\psi-$ 007 (Hall C, JLab)
- Interesting enhancement at large -t for low energy GlueX. PRL 123 (2019) 7. 072001

- 3g+2g exchange needed to describe data
- No clear evidence of narrow P_c states

J/ψ Photoproduction at GlueX - Different possible production mechanisms

Cusps near open charm thresholds?

	$\mathcal{B}(P_c^+ \rightarrow J/\psi p)$	Upper Limits, 9	$\sigma_{\text{max}} \times \mathcal{B}(P_c^+)$	$\rightarrow J/\psi p$) Upper Limits, nb
	p.t.p. only	total	p.t.p only	total
$P_{c}^{+}(4312)$	2.9	4.6	3.7	4.6
$P_{c}^{+}(4440)$	1.6	2.3	1.2	1.8
$P_c^+(4457)$	2.7	3.8	2.9	3.9

Outlook

Outlook for baryon spectroscopy at GlueX

Recently approved proposal at GlueX (arXiv:2405.01288):

- Measurement of the decay parameter α_- of the parity-violating weak decay $\Lambda \to p \pi^-$
- Measure pol. observables P, Σ, T, O_x, O_z, C_x, C_z simultaneously for γp → K⁺Λ using elliptically (linear + circular) polarized photon beam (F. Afzal et al. (A2), Phys. Rev. Lett. 132, 121902 (2024))

- Investigating possibility of a longitudinally polarized target at GlueX (arXiv:2407.06429):
 - Measurement of high-energy contribution to the GDH sum rule (arXiv:2008.11059)
 - Measurement of almost complete set of pol. observables for 2-meson photoproduction (e.g. $K^+ \Lambda \pi^0$) (LOI)
 - Measurement of A_{LL} for J/Ψ photoproduction (LOI)
- Planned measurements with a K_L beam in Hall D (arXiv:2008.08215)

- GlueX has measured a unique photoproduction data set with unprecedented statistical precision in its energy range
- GlueX can investigate excited baryons, ranging from "non-strange", "strange" to the threshold region of the "charm" sector
- *t*-dependence of the Δ^{++} SDMEs determined for the first time: SDMEs resolve sign ambiguity for two helicity amplitudes and provide important constraints for Regge models and ongoing amplitude analyses for the search of light-quark hybrid mesons
- GlueX data supports two-pole structure of $\Lambda(1405)$
- Strong evidence for $\Xi(1690)^-$ and $\Xi(1820)^-$ in the $\Lambda {\cal K}^-$ channel
- J/ψ photoproduction provides exciting opportunities for both hadron spectroscopy and hadron structure \rightarrow More data will be taken in the future for GlueX-II and GlueX-III phase
- Exciting future opportunities at GlueX for baryon spectroscopy with elliptically polarized photon beam and perhaps with a longitudinally polarized target
- GlueX gratefully acknowledges the support of several funding agencies and computing facilities:

 ${\sf gluex.org/thanks}/$