

Accelerator Laboratories GSI and FAIR

	<image/>
	i H 2 13 14 15 16 17 He i
 Existing facility: GSI Darmstadt (Founded: 1969) 	naturich experiment bei GSI bei CO1
 Future facility: FAIR (Founded: 2010) 	
 Landmark in the European research roadmap (ESFRI) 	Bh Hs Mt Ds Rg Cn N
 Employees on location: approx.1580 	107 108 109 110 111 112 11 Bohrium Hassiu Meitneri Darmstadti Roentoeni Copernicium
	m um um um

Why Proton-Induced Reactions at SIS100?

- Currently, in this energy regime only poor data on pp and very little data on np multiplicities, spectra, correlations
- Theoretically complicated region to describe, transition from resonance to string production
- Good understanding mandatory for HIC
- Numerous γ , π , K facilites now and upcoming
- CERN primarily serves higher energy domain, → different production mechanism
- JPARC uses dedicated experiments, → complementary to CBM
- CBM can measure p- and A-induced reactions → backgrounds, systematics *etc*.

Hyperon P	hysics Facilities/Experiments 2024	2028		2032
p+p/A	CERN/JPARC/HADES			СВМ
<mark>₽+</mark> p/A				PANDA
π+p/A	JPARC/HADES			
K+p/A	JPARC	KLF		
γ+p/A	MAMI/ELSA/GLueX/CLAS12		EIC	
e ⁻ +e ⁺	BESIII/BelleII			
				Jenny Taylor

Overview

- |S| = 2, 3 Hyperon Spectroscopy & Production
- Ξ Hyperon Production: From pp to pA & AA
- φ Production and K⁻ Rescattering
- Hyperon Interaction Studies
- Hyperon EM-Structure
- PP J/ ψ Final State, Open Charm
- Exotics
- Hard Hadronic Processes: Transition GPDs
- Forward Spectators and Neutrons
- Input for pA and AA Physics, polarization

02.10.2024

|S| = 2, 3 Hyperon Spectroscopy

- Very little data exist for Ξ^* , Ω^*
- More complete spectra needed for thermal & transport model calculations
- Learn about structure and nature, molecules, pentaquarks...
- Focus on excited Ξ^* and Ω^* states at CBM
 - Sufficient c.m. energy for higher Y* plus associated particles

- Resolve line shapes with \approx 2 MeV resolution (*e.g.* Flatte)
- PWA for Spin-Parity assignment
- Access to production mechanism via $N^* \rightarrow \Xi^* KK$ in exclusive pp reactions ?

Ξ Hyperon Production: From pp to pA & AA

- Strong enhancement of near(sub) threshold Ξ cross section observed in AA (PRL 103, 132301 (2009))
- Confirmed in pA PRL114, 212301 (2015) \rightarrow not Y-Y \rightarrow \equiv N exchange
- Could be explained by assuming significant
 N* → Ξ* KK populated by multistep processes
 J. Steinheimer *et al.*, J. Phys. G43 (2016) 015104

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. C 80, 025209 (2009)

Fáir 🖬 🖬 🖬

Ξ Hyperon Production: From pp to pA & AA

- Strong enhancement of near(sub) threshold Ξ cross section observed in AA (PRL 103, 132301 (2009))
- Confirmed in pA PRL114, 212301 (2015) \rightarrow not Y-Y \rightarrow \equiv N exchange
- Could be explained by assuming significant $N^* \rightarrow \Xi^* KK$ populated by multistep processes J. Steinheimer *et al.*, J. Phys. G43 (2016) 015104
- Ξ not seen in pp 4.5 GeV at SIS18 (prelim HADES) upper limit: $\Xi/(\Lambda+\Sigma^0)<$ 0.5 $\mu b/$ 0.5 mb = 10^-3
- Does pp approach pA & AA at higher √s ?
 →SIS100 proton energy range

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. C 80, 025209 (2009)

- φ/K⁻ ratio much lower in AA than pp Ratio rises close to thresh. (FOPI&HADES)
- Sensitive to interaction radius
- K^-p/K^+p ratio vs M_{inv} sensitive to Kp scat. length
- Subthreshold competition between multi-step production and K⁻N rescattering

02.10.2024

- φ/K⁻ ratio much lower in AA than pp Ratio rises close to thresh. (FOPI&HADES)
- Sensitive to interaction radius
- K^-p/K^+p ratio vs M_{inv} sensitive to Kp scat. length
- Subthreshold competition between multi-step production and K⁻N rescattering
- Big drop of φ/K- ratio with increasing Q seen in HADES pp 4.5 GeV data (1.0→0.1)

Hyperon Interaction Studies: Hypernuclei

- Λ as probe of nuclear structure
- Neutron stars: hyperon puzzle (*i.e.* $M_{allowed} < M_{observed}$) Y energetically favorable at 2-3 ρ_0 , but soft EOS
- 3-Body interactions YN, YY, YNN
- Hypernuclei
 - -> 40 Λ hypernuclei
 - few $\Lambda \Lambda$ hypernuclei
 - few Ξ hypernuclei

(ΛN attractive) (weak attraction) (ΞN attractive)

FAIR ES SS 💼

Hyperon Interaction Studies: Λ -N Scattering

- Scattering data with hyperon beam
 - ΛN < 50 data points (poor beam quality, short lifetime, extrapolation down to low momenta)
 - NN > 5000 data points below 350 MeV

Fáir 🖬 🖬 🖬

Hyperon Interaction Studies: Λ -N Scattering

- Scattering data with hyperon beam
 - $\Lambda N < 50$ data points (poor beam quality, short lifetime, extrapolation down to low momenta)
 - NN > 5000 data points below 350 MeV
- 2 methods to investigate Y-N (YNN) interaction using Final State Interactions (FSI):
 - Femtoscopy
 - Dalitz plot analysis of exclusive final states
 - ightarrow more on both of these on next page

Hyperon Interaction Studies: FSI

- Femtoscopy
 - (measure C, fix S \rightarrow interaction) - uncertainty hard to quantify
 - Source-size
 - Feed-down
 - + Known spin weights
 - \rightarrow pSIS100: less feeddown than LHC
 - \rightarrow help separate S from elem. effects
- Dalitz plot analysis
 - + controllable uncertainties
 - + feed-down manageable
 - spin admixture unknown
 - (polarized beam/target)
 - \rightarrow pSIS100: exlusive final states

05.03.2024

Hyperon EM-Structure

- Measure $Y^* \rightarrow Y\gamma^* \rightarrow Ye^+e^-$
- Determine Electric and Magnetic TFFs
- Decay rates sensitive to structure
- Low BR \rightarrow higher Lumi and σ at SIS100

05.03.2024

• Factorization questionable at 30 GeV/c, PDFs, Production via multiple gluon exchange ?

FAIR ES SS 💼

PP J/ ψ Final State

• Factorization questionable at 30 GeV/c:

3

y(Z)

3.5

4

4.5

0.00

2.5

Jim Ritman

2.5

PRC128(2022)082001

 $^{0}2$

7.5

5.0

у

- Factorization questionable at 30 GeV/c:
- Intrinsic Charm
- LHCb Pentaquarks not seen at GlueX
 - \rightarrow Different production mechanism
 - \rightarrow Structures near Open Charm thresholds (<3 σ)?
 - \rightarrow XYZ studies with pSIS100

- Factorization questionable at 30 GeV/c:
- Intrinsic Charm
- LHCb Pentaquarks not seen at GlueX
- Forward (t=0) J/ ψ d σ /dt related to J/ ψ –N scattering amplitude, and nucleon mass via trace anomaly

- Factorization questionable at 30 GeV/c:
- Intrinsic Charm
- LHCb Pentaquarks not seen at GlueX
- Forward (t=0) J/ ψ d σ /dt related to J/ ψ –N scattering amplitude, and nucleon mass via trace anomaly
- "Gravitational Form Factor"

 → fits to t-spectra at different E_γ
 → mass radius (most E carried by gluons)

γ ΛΛΛ

Hard Hadronic Processes -> Transition GPDs

• $a+b \rightarrow c+d+e \text{ may access GPDs with proton beam}$ Fourier transform of GPDs' dependence on \sqrt{t} provides access to spatial distribution of quarks and gluons inside the hadron in slices of x Kumano, Strkman, and Sudoh, PRD 80, 074003 (2009)

- Forward baryon B, and π N at \approx 90°
- Limits to t' at JPARC E16 (30 GeV/c protons) $\Theta_{\pi,p} > 15^{\circ}, \phi_{\pi-p} > 160^{\circ}$
- CBM covers complimentary kinematics $\Theta_{\pi,p}$ < 25°, all $\phi_{\pi-p}$ NCAL for forward neutron

Proton-Beam as Input for AA Physics

• PP / PN Interactions

- 'input' (hadron production cross sections, momentum distributions) in theoretical models in order to obtain robust conclusions on in medium dynamics in heavy ion collisions
- Reference for nuclear effects (e.g. R(AA/NN), slope parameter etc.)
- Polarization of dileptons
- Isospin effects, e.g. $pp \rightarrow pp\phi$ vs $pn \rightarrow pn\phi \approx 0.25$ expected, sensitive to intrinsic strangeness

• PA Interactions

- Isospin effects on had. prod. with light nuclei (Be, C): indep. constraint on p+n and n+n reactions and baryonic (Δ , N*) resonance excitations

- 'cold' nuclear matter (at $\approx \rho_0$) with p + heavy nuclei (Au, Pb, U)

- In medium effects up to ρ_0

role of rescattering and baryon absorption mechanisms cumulative particle production with large momentum "subthreshold" particle production NN potential cluster production Elena Bratkovskaya

FAIR Highlights – Integration Units are being installed in the tunnels Commissioning from 2025 onwards

FAIR Commissioning is Starting

- First steps are being made in 2024
 - Helium is being bought
 - Fellow and Associate program will start
- In 2025 Commissioning to start for real
- Commissioning Phase to run until 2028
- Operation Phase from 2029 onwards

Summary

- Tremendous physics potential with proton beam from SIS100, from heavy ion dynamics to hadron production and spectroscopy
- CBM seems well adapted to this pp program
- Competitive and complementary program to other facilites world-wide
- Preparations for a "white-paper" beginning

si

"White Paper"

Explore physics potential at SIS100 Feasibility based on FASTSIM-CBM In planning phase Goal: \rightarrow JSC

About 60 people contributing \rightarrow More highly welcome

Afterwards: concrete proposal at CBM

0. Executive summary

- 1. Introduction
- key questions in strong QCD
- context, objectives, process of whitepaper
- 2. Exploiting proton (and pion) beams in the field of QCD matter
- general key features
- state-of-art in experiment and theory
- 3. Hadron-hadron interactions
- femtoscopy
- final-state interaction & partial-wave analysis
- meson-baryon interactions
- charm-nucleon dynamics SU(4)
- hypernuclei
- 4. Hadron spectroscopy
- baryon spectroscopy: double+triple strangeness
- charm spectroscopy
- spectral/line-shape studies
- exotics such as diquark correlations
- 5. Structure of hadrons
- e.m & weak transition form factors of hyperons
- Structure of the proton: intrinsic charm, EHM, GFF, GPDs
- 6. Hadron production mechanisms
- production mechanisms of light mesons, strangeness and charm
- near-threshold production studies of hadrons in p+p/A
- connection to LHC energies/neutrino physics
- 7. Hadrons as probes to study dense matter
- elementary p+p, p+n reactions
- hadron properties in dense matter
- connection to dilepton spectrum
- short-range correlations
- 8. Experimental infrastructure
- GSI/FAIR proton (& possibly pion-beam) facility
- experimental setups: hades, cbm
- modifications to enable elementary proton-driven studies
- international play-field
- 9. Discussion & conclusions
- summary
- roadmap

SPARES

Forward Spectators and Neutrons: FSD and NCAL

FSD

NCAL

- Use deuteron beam

 →Forward p_{sp} for p-n reactions
 →Forward n_{sp}, compare p-p (LH₂) to p-p+n_{sp} (for systematics)
 →NB: Bρ(p_{sp}) = 0.5 Bρ(d) & Bρ(n_{sp}) = ∞
- Hard hadronic processes, $pp \rightarrow p\pi^+n$ (low t')
- Add NCAL behind FSD Improves centrality & EP for AA
- Beam pipe limits acceptance
- Need to include beam emmittence (1mrad)etc.

Radial distance at Z_{FSD} of $(p/n)_{sp}$ to mean pos.

05.03.2024