Accessing GPDs at the LHC

Charlotte Van Hulse University of Alcalá

Comunidad de Madrid 20th IWHSS – 5th CPHI 30 Sep – 04 Oct 2024 Yerevan, Armenia

Hard exclusive meson production Hard scale=large Q²

Hard exclusive meson production Hard scale=large Q²

Hard exclusive meson production Hard scale=large Q²

 $\ddot{}$ large Q^2 Exclusive mesonephotoproduction Hard scale = large charn bottom-quark mass

р

down to x_B=10⁻⁴ at HERA/EIC in ep x_B=10⁻³ at EIC in eA

<u>e</u>

-

庚

down to x_B=10⁻⁶ at LHC in pp x_B=10⁻⁵ at LHC in pA

Ultra-peripheral collisions (UPCs)

large-impact-parameter interactions

Ultra-peripheral collisions (UPCs)

large-impact-parameter interactions hadronic interactions strongly suppressed instead: electromagnetic interactions

Ultra-peripheral collisions (UPCs) large-impact-parameter interactions hadronic interactions strongly suppressed instead: electromagnetic interactions RA $b > R_A + R_B$

Ultra-peripheral collisions (UPCs) large-impact-parameter interactions hadronic interactions strongly suppressed photon flux $\propto Z^2$ instead: electromagnetic interactions RA $b > R_A + R_B$

Ultra-peripheral collisions (UPCs) large-impact-parameter interactions hadronic interactions strongly suppressed photon flux $\propto Z^2$ instead: electromagnetic interactions $b > R_A + R_B$

photon virtuality
$$Q^2 < \left(\frac{\hbar c}{R_A}\right)^2$$

→ quasi-real photons

maximum photon energy = $\frac{2\gamma\hbar c}{b_{\min}}$

Ultra-peripheral collisions (UPCs) large-impact-parameter interactions hadronic interactions strongly suppressed instead: electromagnetic interactions $b > R_A + R_B$

flux $\propto Z^2$

Kinematic coverage

5

У	Run 1		Run 2	
,		detection	of particle	showers
	LHCb fully instr	umented		
5 5	detection of charg	ed particles		
		detection	of particle	showers

proton-proton collisions

JHEP **10** (2018) 167

proton-proton collisions

JHEP **10** (2018) 167

Bethe-Heitler process

proton-proton collisions

JHEP **10** (2018) 167

Bethe-Heitler process

proton-proton collisions

JHEP 10 (2018) 167

Bethe-Heitler process

proton-proton collisions

JHEP 10 (2018) 167

Exclusive J/ ψ and ψ (2S) production in pp collisions at LHCb

7

Exclusive J/ ψ and ψ (2S) production in pp collisions at LHCb

7

arXiv:1609.09738

+ Requirement on forward/backward scintillators and far-foward/backward neutron zero-degree calorimeters (ZDCs)

neutron zero-degree calorimeters (ZDCs)

neutron zero-degree calorimeters (ZDCs)

Extraction of the J/ ψ photoproduction

large mass large mass

Extraction of the J/ψ photoproduction

pp: ambiguity in ID of photon emitter

large mass large mass

Extraction of the J/ψ photoproduction

$$\rightarrow p\psi p = r(W_+)k_+ \frac{\mathrm{d}n}{\mathrm{d}k_+} \sigma_{\gamma p \to \psi p}(W_+) + r(W_-)k_- \frac{\mathrm{d}n}{\mathrm{d}k_-} \sigma_{\gamma p \to \psi p}(W_+) + r(W_+)k_- \frac{\mathrm{d}n}{\mathrm{d}k_-$$

LHCb used HERA data for low- E_{χ} (W_{-}) contribution.

Exclusive J/ ψ photoproduction on the proton: b slope

$$\sigma_{\gamma p \to J/\psi p} \propto e^{-b|t|}$$
$$b = b_0 + 4\alpha' \log\left(\frac{W_{\gamma}}{W_{\gamma}}\right)$$

Υ photoproduction cross section

Υ photoproduction cross section

What object are we probing?

What object are we probing?

Coherent interaction: interaction with target as a whole. ~ target remains in same quantum state.

What object are we probing?

Coherent interaction: interaction with target as a whole. ~ target remains in same quantum state.

What object are we probing?

Coherent interaction: interaction with target as a whole. ~ target remains in same quantum state.

What object are we probing?

Coherent interaction: interaction with target as a whole. ~ target remains in same quantum state.

Incoherent interaction: interaction with constituents inside target.

target does not remain in same quantum state.
 Ex.: target dissociation, excitation

What object are we probing?

Coherent interaction: interaction with target as a whole. ~ target remains in same quantum state.

Incoherent interaction: interaction with constituents inside target.

target does not remain in same quantum state.
 Ex.: target dissociation, excitation

H. Mäntysaari and B. Schenke. Phys. Rev. D 98, 034013 (2018)

Good separation of coherent and incoherent production: not easy!

- Good separation of coherent and incoherent production: not easy!
- Coherent production: measurements up to large t:
 - 3D or 2D (x independent) transverse position

 $d\Delta_{\perp} \operatorname{GPD}(x, 0, \Delta_{\perp}) e^{-ib_{\perp}\Delta_{\perp}}$

Experimentally limited by maximum transverse momentum. Need to extend p_T range as much as possible in measurement. ~third diffractive minimum.

- Good separation of coherent and incoherent production: not easy!
- Coherent production: measurements up to large t:
 - 3D or 2D (x independent) transverse position

 $d\Delta_{\perp} \operatorname{GPD}(x, 0, \Delta_{\perp}) e^{-ib_{\perp}\Delta_{\perp}}$

Experimentally limited by maximum transverse momentum. Need to extend p_T range as much as possible in measurement. ~third diffractive minimum.

Saturation: determine dip position indirectly via slope and probe its dependence With $W_{\gamma p}$

do/dt

Incoherent/Breakup

Coherent/Elastic

Coherent production in PbPb at ALICE

$$R_g = \frac{g^{Pb}}{A \, g^p} \approx 0.65 \text{ at } x \approx 10^7$$

ALICE, Phys. Lett. B 817 (2021) 136280

$$\sigma(y) = N_{\gamma/A}(E_{\gamma,s}) \ \sigma_{J/\psi}(E_{\gamma,s}) + N_{\gamma/A}(E_{\gamma,l}) \ \sigma_{J/\psi}(E_{\gamma,l})$$

$$\sigma(y) = N_{\gamma/A}(E_{\gamma,s}) \ \sigma_{J/\psi}$$

 $_{\psi}(E_{\gamma,s}) + N_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$

$$\sigma(y) = N_{\gamma/A}(E_{\gamma,s}) \ \sigma_{J/\psi}$$

Photon flux $N_{\gamma/A}(E_{\gamma})$ is function of impact parameter: enhanced for large E_{γ} at small impact parameter.

 $\psi(E_{\gamma,s}) + N_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$

$$\sigma(y) = N_{\gamma/A}(E_{\gamma,s}) \ \sigma_{J/\psi}$$

Photon flux $N_{\gamma/A}(E_{\gamma})$ is function of impact parameter: enhanced for large E_{γ} at small impact parameter.

 $\psi(E_{\gamma,s}) + N_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$

$$\sigma(y) = N_{\gamma/A}(E_{\gamma,s}) \ \sigma_{J/\psi}(E_{\gamma,s}) + N_{\gamma/A}(E_{\gamma,l}) \ \sigma_{J/\psi}(E_{\gamma,l})$$

Photon flux $N_{\gamma/A}(E_{\gamma})$ is function of impact parameter: enhanced for large E_{γ} at small impact parameter.

Small impact parameter, b \longrightarrow higher probability for exciting ($\propto 1/b^2$) \longrightarrow higher probability to emit neutrons.

$$\sigma(y) = N_{\gamma/A}(E_{\gamma,s}) \ \sigma_{J/\psi}(E_{\gamma,s}) + N_{\gamma/A}(E_{\gamma,l}) \ \sigma_{J/\psi}(E_{\gamma,l})$$

Photon flux $N_{\gamma/A}(E_{\gamma})$ is function of impact parameter: enhanced for large E_{γ} at small impact parameter.

Small impact parameter, b \longrightarrow higher probability for exciting ($\propto 1/b^2$) \longrightarrow higher probability to emit neutrons.

CMS central detector and the (far-)forward region

CMS central detector and the (far-)forward region

 $1.6 < |y_{\mu}|$

$$_{\mu^+\mu^-}| < 2.4$$

CMS central detector and the (far-)forward region

$$\mu^+\mu^-| < 2.4$$

On neutrons ≥ 1 neutron $\Omega n X n X n X n$

$$\sigma^{0n0n}(y) = N^{0n0n}_{\gamma/A}(E_{\gamma,s}) \ \phi$$
$$\sigma^{0nXn}(y) = N^{0nXn}_{\gamma/A}(E_{\gamma,s}) \ \phi$$
$$\sigma^{XnXn}(y) = N^{XnXn}_{\gamma/A}(E_{\gamma,s})$$

measured

 $\sigma_{J/\psi}(E_{\gamma,s}) + N^{0n0n}_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$

 $\sigma_{J/\psi}(E_{\gamma,s}) + N^{0nXn}_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$

 $\sigma_{J/\psi}(E_{\gamma,s}) + N^{XnXn}_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$

$$\sigma^{0n0n}(y) = N^{0n0n}_{\gamma/A}(E_{\gamma,s}) \sigma_{J/\psi}(E_{\gamma,s}) + N^{0n0n}_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$$

$$\sigma^{0nXn}(y) = N^{0nXn}_{\gamma/A}(E_{\gamma,s}) \sigma_{J/\psi}(E_{\gamma,s}) + N^{0nXn}_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$$

$$\sigma^{XnXn}(y) = N^{XnXn}_{\gamma/A}(E_{\gamma,s}) \sigma_{J/\psi}(E_{\gamma,s}) + N^{XnXn}_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$$

measuredcomputed(StarLight)

computed (StarLight)

$$\sigma^{0n0n}(y) = N^{0n0n}_{\gamma/A}(E_{\gamma,s}) \sigma_{J/\psi}(E_{\gamma,s}) + N^{0n0n}_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$$

$$\sigma^{0nXn}(y) = N^{0nXn}_{\gamma/A}(E_{\gamma,s}) \sigma_{J/\psi}(E_{\gamma,s}) + N^{0nXn}_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$$

$$\sigma^{XnXn}(y) = N^{XnXn}_{\gamma/A}(E_{\gamma,s}) \sigma_{J/\psi}(E_{\gamma,s}) + N^{XnXn}_{\gamma/A}(E_{\gamma,l}) \sigma_{J/\psi}(E_{\gamma,l})$$
measured computed extracted computed (StarLight) extracted

(StarLight)

CMS: γ Pb cross section, energy dependence

ALICE: γPb cross section, energy dependence

21

Summary

- Exclusive single-quarkonium production in pp:
 - unique potential to constrain GPDs at very low x_B , down to 10⁻⁶
 - probe universality
- Exclusive single-quarkonium production in pPb: cleanest channel to probe the proton in hadron-hadron collisions, since absence of ambiguity
- Exclusive single-quarkonium production in PbPb:
 - access to nuclear GPDs
 - potential to probe saturation effects
- Future measurements will allow to probe low x_B and high x_B region (with fixed target)

neutron tagging by CMS and ALICE: intriguing small linear rise of cross section for $W_{\gamma N}$ >40 GeV

Back up

Coherent photoproduction in PbPb: y dependence

$$\sigma_{J/\psi}^{
m coh} = 5.965$$
 $\sigma_{\psi(2S)}^{
m coh} = 0.923$

 $\pm 0.059 \pm 0.232 \pm 0.262 \,\mathrm{mb}$ $\pm 0.086 \pm 0.028 \pm 0.040 \,\mathrm{mb}$

24

Coherent photoproduction in PbPb: p_T dependence

Coherent photoproduction in PbPb: $\psi(2S)/J/\psi$

Incoherent production

$$\sigma_{\rm tot} \sim \langle |A|^2 \rangle$$

$$\sigma_{\rm coh} \sim \left| \langle A \rangle \right|^2$$

$$\begin{split} \sigma_{\rm incoh} &\sim \sum_{f \neq i} \left| \langle f | A | i \rangle \right|^2 \\ &= \sum_{f} \langle i | A | f \rangle^{\dagger} \langle f | A | i \rangle - \langle i | A | i \rangle^{\dagger} \langle i | A | i \rangle \\ &= \left(\langle | A |^2 \rangle - | \langle A \rangle |^2 \right) \end{split}$$

average cross sections

average amplitude over target configurations: probes average distributions

Incoherent = difference between both: probes event-by-event fluctuations
Incoherent production

$$\sigma_{\rm tot} \sim \langle |A|^2 \rangle$$

$$\sigma_{\rm coh} \sim \left| \langle A \rangle \right|^2$$

$$\begin{split} \sigma_{\rm incoh} &\sim \sum_{f \neq i} \left| \langle f | A | i \rangle \right|^2 \\ &= \sum_{f} \langle i | A | f \rangle^{\dagger} \langle f | A | i \rangle - \langle i | A | i \rangle^{\dagger} \langle i | A | i \rangle \\ &= \left(\langle | A |^2 \rangle - | \langle A \rangle |^2 \right) \end{split}$$

average cross sections

average amplitude over target configurations: probes average distributions

Incoherent = difference between both: probes event-by-event fluctuations

H. Mäntysaari and B. Schenke. Phys. Rev. D 98, 034013 (2018)

Dissociative production measured by ALICE

