COMPASS results for Collins and Sivers asymmetries in K^o -production from 2022 ⁶LiD data

A. Hoghmrtsyan

Alikhanyan National Science Laboratory(Yerevan, Armenia)

On behalf of the COMPASS collaboration

Joint 20th International Workshop on Hadron Structure and Spectroscopy Yerevan, Armenia September 30 – October 4, 2024

COMPASS collaboration (COmmon Muon Proton Apparatus for Structure and Spectroscopy)

Beam Properties:

Particle: μ⁺ Polarization: 80% Momentum: 160 GeV/c

04 October 2024

SIDIS X-SECTION AND TMDS

```
\frac{d\sigma}{dxdydzdP_{hT}^2d\varphi_hd\psi} = \left|\frac{\alpha}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)\right| \left(F_{UU,T}+\varepsilon F_{UU,L}\right) \times
\left(1+\cos\phi_{h}\left(\sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\phi_{h}}\right)+\cos 2\phi_{h}\left(\varepsilon A_{UU}^{\cos2\phi_{h}}\right)\right)
    + \lambda \sin \phi_h \left( \sqrt{2\varepsilon (1-\varepsilon)} A_{LU}^{\sin \phi_h} \right)
    + S_L \left[ \sin \phi_h \left( \sqrt{2\varepsilon (1+\varepsilon)} A_{UL}^{\sin \phi_h} \right) + \sin 2\phi_h \left( \varepsilon A_{UL}^{\sin 2\phi_h} \right) \right]
    + S_L \lambda \left[ \sqrt{1 - \varepsilon^2} A_{LL} + \cos \phi_h \left( \sqrt{2 \varepsilon (1 - \varepsilon)} A_{LL}^{\cos \phi_h} \right) \right]
                           \sin\left(\phi_{h}-\phi_{S}\right)\left(A_{UT}^{\sin\left(\phi_{h}-\phi_{S}\right)}\right)
                           + \sin(\phi_h + \phi_S)(\varepsilon A_{UT}^{\sin(\phi_h + \phi_S)})
    + S_{T} + \sin(3\phi_h - \phi_s)(\varepsilon A_{UT}^{\sin(3\phi_h - \phi_s)})
                           + \sin \phi_{\rm s} \left( \sqrt{2\varepsilon (1+\varepsilon)} A_{\rm UT}^{\sin \phi_{\rm s}} \right)
                          + \sin(2\phi_h - \phi_S) \left( \sqrt{2\varepsilon(1+\varepsilon)} A_{UT}^{\sin(2\phi_h - \phi_S)} \right)
                          \cos(\phi_h - \phi_S) \left( \sqrt{(1 - \varepsilon^2)} A_{LT}^{\cos(\phi_h - \phi_S)} \right)
   + S_{T}\lambda + \cos\phi_{S}\left(\sqrt{2\varepsilon(1-\varepsilon)}A_{LT}^{\cos\phi_{S}}\right)
                         + \cos\left(2\phi_h - \phi_S\right) \left(\sqrt{2\varepsilon (1-\varepsilon)} A_{LT}^{\cos(2\phi_h - \phi_S)}\right)
```

From 15 asymmetries we are interested in two of them

Collins
$$A_{UT}^{\sin(\phi_h + \phi_S)}(x) \simeq \frac{\sum_q e_q^2 h_1^q(x) \otimes H_1^{\perp, q \to h}}{\sum_q e_q^2 f_1^q(x) \otimes D_1^{q \to h}}$$

Sivers
$$A_{UT}^{\sin(\phi_h - \phi_S)}(x) \simeq \frac{\sum_q e_q^2 f_{1T}^{\perp,q}(x) \otimes D_1^{q \to h}}{\sum_q e_q^2 f_1^q(x) \otimes D_1^{q \to h}}$$

Twist 2 TMD PDFs

SIDIS Lepton kinematics

K⁰ Selection

Armenteros Cuts

- Λ/Λ exclusion: 80 MeV/c < P_T < 110 MeV/c
- e^+/e^- background exclusion $P_T > 40 \text{ MeV/c}$
- K^0 mass $\pm \, 20 \; MeV/c^2$ of the PDG K^0 mass

Estimated background 2%

Hadronic Cuts

0.2 < z < 1 for the fractional photon energy transferred to the K^0

Transverse momentum $P_T > 0.1 \text{ GeV/c}$

Final Statistics 780837

counts

COLLINS AND SIVERS EFFECTS (DEUTERON 2002-2004)

- Asymmetries consistent with zero
- 1st deuteron measurements (the only existing transverse deuteron target data up to 2022)

Final Statistics 250000

COLLINS AND SIVERS EFFECTS (PROTON-2010)

- Positive trend for collins asymmetries for increased z
- Average asymmetries positive but compatible with zero

COMPASS PLB 744(2015)250

Final Statistics 1000000

~70% of 2022 Data

Overall positive trend is observed for both Collins and Sivers asymmetries

Amplitudes are consistent with zero within the errors for both asymmetries

04 October 2024

Collins TSAs vs Old Data

$$A_{UT}^{\sin(\phi_h+\phi_s)} \propto h_1^q \otimes H_{1q}^{\perp h}$$

New results are consistent within the errors with previous 2002-04 results, with a higher precision

New results are consistent with previously published 2010 proton data

Sivers TSAs vs Old Data

$$A_{UT}^{\sin(\phi_h-\phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h$$

New results are consistent with previously published 2002-2004 data

Differences are observed at small x

Amplitudes are consistent with previously published 2010 proton data

04 October 2024

Conclusions

- Measured from part (~70%) of the SIDIS data collected in 2022
- The asymmetries are evaluated as a function of x, z and P_T
- Significant precision improvement as compared to the old 2002-04 data
- comparable accuracy when confronted to the proton 2010 results
- both Collins and Sivers K⁰TSAs appear to be compatible with zero within the uncertainties, but with overall tendency to positive values
- Looking forward for PID analysis

Thank You