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Establishment of NC

The SU(2) × U(1) gauge symmetry implies NC interaction
which has been verified by the interaction between neutrino
and matter fields at the Gargamelle experiment at CERN.

Gargamelle Neutrino Collaboration, Phys.Lett.B 46 (1973) 138-140
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Origin(s) of NC NSI

Wolfenstein’s initial suggestion has been replaced by the neutrino mixing scheme, which is now
the accepted explanation for neutrino oscillations and the solar neutrino anomaly.

L. Wolfenstein, Phys.Rev.D 17 (1978) 2369-2374

NSI has gained renewed interest as a subdominant effect to be discovered in current and upcoming
precision neutrino experiments.

NSI could indeed be related to new gauge bosons and HNLs like sterile neutrinos within the
seesaw mechanism and leptogenesis.

M. Malinsky et al., Phys.Rev.D 79 (2009) 011301
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Generalized ν NC interaction with matter in quark-level
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Effect of NC NSI on Deep Inelastic Scattering

based on our JHEP 04 (2024) 038
in collaboration with Y. Farzan, S. Safari and S. Abbaslu
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https://doi.org/10.1007/JHEP04(2024)038


NC DIS differential XS
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One could find neutron XS using by charge symmetry (
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d (x))
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Is DIS enough for our purpose?

G.P. Zeller et al., Rev.Mod.Phys. 84 (2012) 1307-1341

For the CHIPS experiment with a simple water Cherenkov detector, it is shown that by invoking
the neural network technique, the distinction DIS from Quasi-Elastic and resonance events.

J. Tingey et al., JINST 18 (2023) 06, P06032
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Effect of NC NSI on the Quasi-Elastic scattering

based on our upcoming work
in collaboration with Y. Farzan, S. Safari and S. Abbaslu

9 / 15



NC QE scattering differential XS
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Modifed Form Factors
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Bounds on NC NSI as the results
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Bounds on vectorial part of NC NSI
From ν oscillation and Coherent Elastic ν Nucleus Scattering
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P. Coloma et al., JHEP 12 (2020) 071
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Bounds on axial part of NC NSI

From DIS occures with high energy neutrino beam at

▶ NuTeV

|ϵAuµµ| < 0.006, |ϵAdµµ| < 0.018, |ϵAuµτ |, |ϵAdµτ | < 0.01

NuTeV Collaboration, Phys.Rev.Lett. 88 (2002) 091802

▶ CHARM

|ϵAuee | < 1, |ϵAdee | < 0.9, |ϵAueτ |, |ϵAdeτ | < 0.5

CHARM Collaboration, Phys.Lett.B 180 (1986) 303-307

▶ DUNE-like future experiments could improve bounds on all flavor elements

S. Abbaslu, M. Dehpour, S. Safari, Y. Farzan, JHEP 04 (2024) 038

From QE scattering?!
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https://doi.org/10.1103/PhysRevLett.88.091802
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https://doi.org/10.1007/JHEP04(2024)038


Thanks for your attention!
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Backup slides
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Kinematic variables
The process under consideration is

ν(p) + N(P) → ν(p′) + X (P ′)

Energy, momentum and squared four-momentum transfer:

ν = Eν − E ′
ν = E ′ − E , q⃗ = p⃗ − p⃗′ = P⃗ ′ − P⃗, q2 = ν2 − q⃗2 ≡ Q2

squared total center-of-mass energy:

s = (p + P)2 ≡ W 2

Bjorken scaling variable:

x =
Q2

2P.q

Fraction of lepton energy loss in lab. frame:

y =
q.P

p.P
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Lab. frame relations

Consider P = (MN , 0) and reletivisic lepton and neglect their mass in comparison with their
energy (Eν ≃ |p⃗|)

Q2 ≃ 4EE ′
ν sin

2 θ

2
, W 2 ≃ 2MNEν +M2

N

x =
Q2

2MNν
, y =

ν

Eν
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4-Fermi approximation

For scattering with low momentum transfer (|q2| ≪ MZ ) we can replace the propagator

i

q2 −M2
Z

(
−gµν +

qµqν

M2
Z

)
→ igµν

M2
Z
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DIS squared spin avraged matrix element

|M|2 = GF

2
LµνW

µν

Lµν =
∑
initial
spin

∑
final
spin

< ν(p′)|jµ(0)|ν(p) >†< ν(p′)|jν(0)|ν(p) >

W µν =
1

2

∑
initial
spin

∑
X

states

< X (P ′)|Jµ(0)|N(P) >†< X (P ′)|Jν(0)|N(P) >

where u represent Dirac spinors
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Leptonic and hadron tensor

Lµν = pµp
′
ν + p′µpν − gµνp.p

′ + iϵµνρσp
ρp′σ

1
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DIS differential XS and scalling

d2σ

dΩdE ′
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Sum on final neutrino flavor

A DUNE-like detectors does not detect the final neutrino in the ν-nucleus scattering so

σ
(−)
ν α

NC =
∑

β=e,µ,τ

σNC(
(−)
να N →

(−)
νβ +X )
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Deep Underground Neutrino Experiment
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https://lbnf-dune.fnal.gov/


ν oscillation corrections on XS in the DUNE-like FD

M(
(−)
ν far +q →

(−)
ν β +q) =

∑
α=e,µτ

(−)

A α M(
(−)
ν α +q →

(−)
ν β +q)

where Aα is amplitude of neutrino oscilation which satisfied in

|Aα|2 = P(νµ → να)

10 / 15



Number of events in the DUNE-like
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(−)
ν

=
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NSI bound forecast through DIS at DUNE Near Detector
Parameter Flux σϵ = 0, σω = 0 σϵ = 10%, σω = 0 σϵ = 10%, σω = 2%

ϵAueµ
CP [-0.19,0.19]
τ

[-0.0098, 0.0098]
[-0.0078,0.0078]

[-0.018,0.018]
[-0.015,0.015] [-0.19,0.19]

ϵAuµµ
CP [-0.000099,0.000099] [-0.0007,0.0007]
τ [-0.000062,0.000062] [-0.0004,0.0004]

[-0.065,0.065]
[-0.065,0.065]

ϵAuµτ
CP [-0.19,0.19]
τ

[-0.0098,0.0098]
[-0.0078,0.0078]

[-0.018,0.018]
[-0.014,0.014] [-0.19,0.19]

ϵAdeµ
CP [-0.19,0.19]
τ

[-0.0096,0.0096]
[-0.0076,0.0076]

[-0.018,0.018]
[-0.014,0.014] [-0.19,0.19]

ϵAdµµ
CP [-0.12,0.12]
τ

[-0.00009,0.00009]
[-0.00006,0.00006]

[-0.0034,0.0034]
[-0.0021,0.0021] [-0.12,0.12]

ϵAdµτ
CP [-0.19,0.19]
τ

[-0.0095,0.0095]
[-0.0076,0.0076]

[-0.018,0.018]
[-0.014,0.014] [-0.19,0.19]

ϵAseµ
CP [-0.55,0.55]
τ

[-0.027,0.027]
[-0.022,0.022]

[-0.051,0.051]
[-0.041,0.041] [-0.55,0.55]

ϵAsµµ
CP [-1.21,1.21]
τ

[-0.00075,0.00075]
[-0.00048,0.00048]

[-0.0026,0.0026]
[-0.0016,0.0016] [-1.21,1.21]

ϵAsµτ
CP [-0.55,0.55]
τ

[-0.027,0.027]
[-0.022,0.022]

[-0.051,0.051]
[-0.041,0.041] [-0.55,0.55]

ϵAueµ =ϵAdeµ
CP [-0.14,0.14]
τ

[-0.0069,0.0069]
[-0.0055,0.0055]

[-0.013,0.013]
[-0.010,0.010] [-0.14,0.14]

ϵAuµµ=ϵAdµµ
CP [-0.00074,0.00074] [-0.00085,0.00085]
τ [-0.00045,0.00045] [-0.00054,0.00054]

[-0.072,0.072]
[-0.072,0.072]

ϵAuµτ =ϵAdµτ
CP [-0.14,0.14]
τ

[-0.0069,0.0069]
[-0.0055,0.0055]

[-0.013,0.013]
[-0.010,0.010] [-0.14,0.14]
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NSI bound forecast through DIS at DUNE Far Detector
Parameter Flux σϵ = 0, σω = 0 σϵ = 10%, σω = 0 σϵ = 10%, σω = 2%

ϵAuee
CP [-1.28, 0.23] [-2.7, 0.9] [-2.8, 1.2]
τ [-1.35, 0.33] [-2.1, 2.5] [-2.9, 2.7]

ϵAueτ
CP [-0.22, 0.23] [-0.26, 0.29]
τ

[-0.065, 0.038]
[-0.078, 0.072] [-0.22, 0.30] [-0.32, 0.40]

ϵAuττ
CP
τ

[-0.014, 0.014]
[-0.021, 0.021]

[-0.082, 0.072]
[-0.652,0.503]+[-0.117, 0.089]

[-0.118, 0.100]
[-0.718, 0.156]

ϵAdee
CP [-0.20, 0.93,0.35]+[ 1.24] [-0.7, 2.7] [-0.96, 2.78]
τ [-0.30, 1.29] [-2.8, 1.2] [-2.77, 2.37]

ϵAdeτ
CP [-0.18, 0.23] [-0.23, 0.27]
τ

[-0.051,0.040]
[-0.076, 0.052] [-0.24, 0.23] [-0.33, 0.32]

ϵAdττ
CP [-0.11, 0.24] [-0.14, 0.24]
τ

[-0.014, 0.016]
[-0.021, 0.021] [-0.14, 0.37] [-0.21, 0.44]

ϵAsee
CP [-1.1, 2.1] [-4.1, 5.0] [-4.7, 5.7]
τ [-1.5, 2.5] [-6.1, 7.1] [-7.6, 8.6]

ϵAseτ
CP [-0.54, 0.22] [-0.72, 0.52] [-0.85, 0.65]
τ [-0.59, 0.27] [-0.82, 0.57] [-1.1, 0.84]

ϵAsττ
CP [-0.11, 0.15]+ 0.85,[ 1.11] [-0.29, 1.28] [-0.39, 1.39]
τ [-0.14, 0.21]+[0.79, 1.45] [0.35, 1.35] [-0.58, 1.58]

ϵAuee =ϵAdee
CP [-0.35, 0.41] [-0.9, 1.3] [-1.1, 1.5]
τ [-0.45, 0.49] [-1.9, 1.3] [-2.1, 1.8]

ϵAueτ =ϵAdeτ
CP [-0.13, 0.18] [-0.16, 0.21]
τ

[-0.089, 0.083]
[-0.101, 0.095] [-0.14, 0.20] [-0.21, 0.26]

ϵAuττ =ϵAdττ
CP [-0.24, 0.09] [-0.27, 0.13]
τ

[-0.076, 0.084]
[-0.088, 0.099] [-0.26, 0.11] [-0.32, 0.18]
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Imaginary part of NSI parameter
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Strange axial coupling constant

0.8− 0.7− 0.6− 0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2
s
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KamLAND Collaboration, Phys.Rev.D 107 (2023) 7, 072006
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