ALESSANDRO BACCHETTA, PAVIA U. AND INFN

TMD OVERVIEW

slide from 2018 CPHI@Yerevan It's the dawn of TMD global fits era

slide from 2018 CPHI@Yerevan It's the dawn of TMD global fits era

... but there's still a lot of climbing to be done

 TMD multiplicities for pions and kaons, off protons and deuterons, from **COMPASS** and JLab

- COMPASS and JLab
- Drell-Yan and Z measurements from CERN, RHIC, FermiLab (COMPASS with pions)

slide from 2018 CPHI@Yerevan

• TMD multiplicities for pions and kaons, off protons and deuterons, from

- TMD multiplicities for pions and kaons, off protons and deuterons, from COMPASS and JLab
- Drell-Yan and Z measurements from CERN, RHIC, FermiLab (COMPASS with pions)
- TMD multiplicities for pions and kaons in e⁺e⁻ from BELLE and BES

- TMD multiplicities for pions and kaons, off protons and deuterons, from COMPASS and JLab
- Drell-Yan and Z measurements from CERN, RHIC, FermiLab (COMPASS with pions)
- TMD multiplicities for pions and kaons in e⁺e⁻ from BELLE and BES
- Better understanding and control of higher-order QCD corrections

- TMD multiplicities for pions and kaons, off protons and deuterons, from COMPASS and JLab
- Drell-Yan and Z measurements from CERN, RHIC, FermiLab (COMPASS with pions)
- TMD multiplicities for pions and kaons in e⁺e⁻ from BELLE and BES
- Better understanding and control of higher-order QCD corrections
- More flexible functional forms, flavour dependence, at least two or three alternative extractions

- TMD multiplicities for pions and kaons, off protons and deuterons, from COMPASS and JLab
- Drell-Yan and Z measurements from CERN, RHIC, FermiLab (COMPASS with pions)
- TMD multiplicities for pions and kaons in e⁺e⁻ from BELLE and BES
- Better understanding and control of higher-order QCD corrections
- More flexible functional forms, flavour dependence, at least two or three alternative extractions
- Use TMDs for something else (W mass... comparison with lattice... Wigner distributions...)

- TMD multiplicities for pions and kaons, off protons and deuterons, from COMPASS and JLab
- Drell-Yan and Z measurements from CERN, RHIC, FermiLab (COMPASS with pions)
- TMD multiplicities for pions and kaons in e⁺e⁻ from BELLE and BES
- Better understanding and control of higher-order QCD corrections
- More flexible functional forms, flavour dependence, at least two or three alternative extractions
- Use TMDs for something else (W mass... comparison with lattice... Wigner distributions...)

READY TO USE EIC DATA

How "wide" is the distribution?

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

<u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u>

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd <u>Mulders-Tangerman, NPB 461 (96)</u> <u>Boer-Mulders, PRD 57 (98)</u>

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98)

Very good knowledge of x dependence of f_1 and g_{1L}

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

- Very good knowledge of x dependence of f_1 and g_{1L}
- Good knowledge of the k_T dependence of f_1 (also for pions)
- Fair knowledge of Sivers and transversity (mainly x dependence)
- Some hints about all others

AVAILABLE EXTRACTIONS (NEWEST ONLY)

Unpol. TMD	MAP 22 arXiv:2206.0759	
Helicity		
Transversity	arXiv:1505.05589, arXiv:	
Sivers	MAP20 arXiv:2004.1427 arXiv:2304.14328	
Boer-Mulders	<u>arXiv:2004.02117</u> ,	
Worm-gear g1T	<u>arXiv:2110.10253, arXiv:</u>	
Worm-gear h1L		
Pretzelosity	arXiv:1411.0580	

98, <u>ART23 2305.07473</u>

:1612.06413, arXiv:2205.00999

78, arXiv:2009.10710, arXiv:2103.03270, arXiv:2205.00999,

2210.07268

AVAILABLE EXTRACTIONS (NEWEST ONLY)

Unpol. TMD	MAP 22 arXiv:2206.0759
Helicity	<u>arXiv:2409.08110, MA</u>
Transversity	arXiv:1505.05589, arXiv:
Sivers	MAP20 arXiv:2004.1427 arXiv:2304.14328
Boer-Mulders	<u>arXiv:2004.02117</u> , arXiv
Worm-gear g1T	<u>arXiv:2110.10253</u> , <u>arXiv:</u>
Worm-gear h1L	
Pretzelosity	arXiv:1411.0580

NEW THIS YEAR

98, <u>ART23 2305.07473</u>, **MAP24 arXiv:2405.13833**

P24, arXiv:2409.18078

:1612.06413, arXiv:2205.00999

<u>8, arXiv:2009.10710, arXiv:2103.03270, arXiv:2205.00999</u>,

:2407.06277

2210.07268

AVAILABLE EXTRACTIONS (NEWEST ONLY)

Unpol. TMD	MAP 22 arXiv:2206.0759		
Helicity	arXiv:2409.08110, MA		
Transversity	arXiv:1505.05589, arXiv:		
Sivers	MAP20 arXiv:2004.1427 arXiv:2304.14328		
Boer-Mulders	arXiv:2004.02117, arXiv		
Worm-gear g1T	arXiv:2110.10253, arXiv:		
Worm-gear h1L			
Pretzelosity	arXiv:1411.0580		

Not mentioned: pion TMDs, TMD fragmentation functions, nuclear TMDs

NEW THIS YEAR

98, ART23 2305.07473, MAP24 arXiv:2405.13833

P24, arXiv:2409.18078

1612.06413, arXiv:2205.00999

<u>8, arXiv:2009.10710, arXiv:2103.03270, arXiv:2205.00999</u>

:2407.06277

2210.07268

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

Lots of progress from the theory side

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

- Lots of progress from the theory side
- Some knowledge of g_T x-dependence

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

- Lots of progress from the theory side
- Some knowledge of g_T x-dependence
- First hints about e x-dependence

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

- Lots of progress from the theory side
- Some knowledge of g_T x-dependence
- First hints about e x-dependence
- All others unknown

	gluon pol.			
		U	circ	linear
pol.	U	f_1^g		$h_1^{\perp g}$
leon	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc]	Τ	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, \ h_{1T}^{\perp g}$

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders, Rodrigues, PRD63, 2001

	gluon pol.			
		U	circ	linear
pol.	U	f_1^g		$h_1^{\perp g}$
leon	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc]	Τ	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, \ h_{1T}^{\perp g}$

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders, Rodrigues, PRD63, 2001

Good knowledge of x-dependence of f₁ and g_{1L}

	gluon pol.			
		U	circ	linear
pol.	U	f_1^g		$h_1^{\perp g}$
leon	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc]	Τ	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, \ h_{1T}^{\perp g}$

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders, Rodrigues, PRD63, 2001

- Good knowledge of
 x-dependence of f₁ and g_{1L}
- Some hints on the k_T dependence of f_1

	gluon pol.			
		U	circ	linear
pol.	U	f_1^g		$h_1^{\perp g}$
leon	L		g^g_{1L}	$h_{1L}^{\perp g}$
nuc]	Τ	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, \ h_{1T}^{\perp g}$

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders, Rodrigues, PRD63, 2001

- Good knowledge of
 x-dependence of f₁ and g_{1L}
- Some hints on the k_T dependence of f_1

TMD TABLE: GLUONS, LEADING TWIST

	gluon pol.							
		U	circ	linear				
eon pol.	U	f_1^g		$h_1^{\perp g}$				
	L		g^g_{1L}	$h_{1L}^{\perp g}$				
nuc]	Τ	$f_{1T}^{\perp g}$	g_{1T}^g	$h_1^g, \ h_{1T}^{\perp g}$				

TMDs in **black** survive integration over transverse momentum TMDs in **red** are time-reversal odd

Mulders, Rodrigues, PRD63, 2001

- Good knowledge of x-dependence of f_1 and g_{1L}
- Some hints on the k_T dependence of f_1

See talk by Cristian Pisano

TMDS IN DRELL-YAN PROCESSES

1	1	

TMDS IN DRELL-YAN PROCESSES

The analysis is usually done in Fourier-transformed space

1	1	

TMDS IN DRELL-YAN PROCESSES

The analysis is usually done in Fourier-transformed space TMDs formally depend on two scales, but we set them equal.

1	1	

TMDS IN SEMI-INCLUSIVE DIS (SIDIS)

 $\hat{f}_1^a(x, |\boldsymbol{b}_T|; \mu, \zeta) = \int d^2 \boldsymbol{k}_\perp e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} f_1^a(x, \boldsymbol{k}_\perp^2; \mu, \zeta)$

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

 $\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{a_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\gamma_{b_*}\right) = [C \otimes f_1](x,$

$$\mu_b = \frac{2e^{-\gamma_E}}{b_T}$$

$$\mu,\zeta)$$

$$\gamma_F - \gamma_K \ln \frac{\sqrt{\zeta_f}}{\mu} \left(\frac{\sqrt{\zeta_f}}{\mu_{b_*}} \right)^{K_{\text{resum}} + g_K}$$

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_1^a(x, b_T^2; \mu_f, \zeta_f) = [C \otimes f_1](x, \mu_{b_*}) \ e^{\int_{\mu_{b_*}}^{\mu_f} \frac{d\mu}{\mu}} \left(\frac{d\mu}{d\mu} \right)$$

collinear PDF

 $\mu_b = \frac{2e^{-\gamma_E}}{b_T}$

matching coefficients (perturbative)

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu}} \left(\zeta_{f} \right)$$

collinear PDF

matching coefficients (perturbative)

$$\hat{f}_1^a(x, |\boldsymbol{b}_T|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^2 \boldsymbol{k}_\perp \, e^{i\boldsymbol{b}_T \cdot \boldsymbol{k}_\perp} \, f_1^a(x, \boldsymbol{k}_\perp^2;$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = [C \otimes f_{1}](x, \mu_{b_{*}}) \ e^{\int_{\mu_{b_{*}}}^{\mu_{f}} \frac{d\mu}{\mu}} \left(\zeta_{f} \right)$$

collinear PDF

matching coefficients (perturbative)

UNPOLARIZED TMD GLOBAL FITS

	Accuracy	SIDIS HERMES	SIDIS COMPASS	DY fixed target	DY collider	N of points	χ²/N _{point}
Pavia 2017 <u>arXiv:1703.10157</u>	NLL			~		8059	1.55
SV 2019 <u>arXiv:1912.06532</u>	N ³ LL-			~		1039	1.06
MAP22 <u>arXiv:2206.07598</u>	N ³ LL-			~		2031	1.06
ART23 <u>arXiv:2305.07473</u>	N4LL	×	×	•		627	0.96
MAP24 <u>arXiv:2405.13833</u>	N ³ LL					2031	1.08

UNPOLARIZED TMD GLOBAL FITS

	Accuracy	SIDIS HERMES	SIDIS COMPASS	DY fixed target	DY collider	N of points	χ^2/N_{points}
Pavia 2017 <u>arXiv:1703.10157</u>	NLL		•			8059	1.55
SV 2019 <u>arXiv:1912.06532</u>	N ³ LL-		•			1039	1.06
MAP22 <u>arXiv:2206.07598</u>	N ³ LL-					2031	1.06
ART23 <u>arXiv:2305.07473</u>	N4LL	×	×	~		627	0.96
MAP24 <u>arXiv:2405.13833</u>	N ³ LL					2031	1.08

See talks by Filippo Delcarro and Valentin Moos

UNPOLARIZED TMD GLOBAL FITS

	Accuracy	SIDIS HERMES	SIDIS COMPASS	DY fixed target	DY collider	N of points	χ²/Ν _{point}
Pavia 2017 <u>arXiv:1703.10157</u>	NLL			~		8059	1.55
SV 2019 <u>arXiv:1912.06532</u>	N ³ LL-				~	1039	1.06
MAP22 <u>arXiv:2206.07598</u>	N ³ LL-					2031	1.06
ART23 <u>arXiv:2305.07473</u>	N ⁴ LL	×	×			627	0.96
MAP24 arXiv:2405.13833	N ³ LL					2031	1.08

See talks by Filippo Delcarro and Valentin Moos see also Parton Branching approach, talk by Louis Moureaux

$\frac{|k_{\perp}| [\text{GeV}]}{|k_{\perp}| [\text{GeV}]} = \frac{1.00 \text{ m/s}}{|k_{\perp}| [\text{GeV}]} = \frac{1.00 \text{ m/s}}{|k_{\perp}| [\text{GeV}]}$

MAP Collaboration, arXiv:2405.13833

0.20 0.50 0.10 1.00 1.20 1.000.00 0.40 $|k_{\perp}|~[{ m GeV}]$ **FLAVOR-DEPENDENT UNPOLARIZED TMDS**

MAP Collaboration, arXiv:2405.13833

See talk by Filippo Delcarro

COMPASS multiplicities (one of many bins)

COMPASS multiplicities (one of many bins)

Scimemi, Vladimirov, arXiv:1912.06532

Scimemi, Vladimirov, arXiv:1912.06532

Also in the SV19 study, the overall decrease is evident

Scimemi, Vladimirov, arXiv:1912.06532

$|q_T| = |P_{hT}|/z \ll Q$

 GeV^2 \mathbf{Q}^2

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk, arXiv:2201.12197

$|q_T| = |P_{hT}|/z \ll Q$

Approximate region corresponding to MAP22 cuts

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk, arXiv:2201.12197

$|q_T| = |P_{hT}|/z \ll Q$ Approximate region corresponding to MAP22 cuts

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk, arXiv:2201.12197

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider transverse momentum

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider transverse momentum

Aslan, Boglione, Gonzalez-Hernandez, Rainaldi, Rogers, Simonelli, 2401.14266

Aslan, Boglione, Gonzalez-Hernandez, Rainaldi, Rogers, Simonelli, 2401.14266

Aslan, Boglione, Gonzalez-Hernandez, Rainaldi, Rogers, Simonelli, 2401.14266

The paper emphasizes the relevance of prescription choices and simultaneous TMD-PDF fit, but does not provide a fit to extended data sets.

Aslan, Boglione, Gonzalez-Hernandez, Rainaldi, Rogers, Simonelli, 2401.14266

The paper emphasizes the relevance of prescription choices and simultaneous TMD-PDF fit, but does not provide a fit to extended data sets.

See talk by Tommaso Rainaldi

VECTOR MESON CONTAMINATIONS

Semi-inclusive

Semi-inclusive

HARUT'S CARTOON AT TRANSVERSITY 2024

Procrustes - Greek Mythology

Procrustes - Greek Mythology

Procrustes - Greek Mythology

EXPECTED DATA

<u>G. Angelini's talk at SarWors2021</u>

Simple Guassians or bell-like shapes are not sufficient to describe data

- Simple Guassians or bell-like shapes are not sufficient to describe data
- The TMD shape must be x-dependent

- Simple Guassians or bell-like shapes are not sufficient to describe data
- The TMD shape must be x-dependent

The TMD frag. functions are probably different for different final-state hadrons

- Simple Guassians or bell-like shapes are not sufficient to describe data
- The TMD shape must be x-dependent
- The TMDs are probably different for different quark flavors

The TMD frag. functions are probably different for different final-state hadrons

ECINEE CIONS WITH OTHER FIELDS

Bermudez Martinez, Vladimirov, arXiv:2206.01105

Bermudez Martinez, Vladimirov, arXiv:2206.01105

TMD phenomenology

Bermudez Martinez, Vladimirov, arXiv:2206.01105

Bermudez Martinez, Vladimirov, arXiv:2206.01105

Avkhadiev, Shanahan, Wagman, Zhao, arXiv:2307.12359

Bermudez Martinez, Vladimirov, arXiv:2206.01105

<u>Avkhadiev, Shanahan, Wagman, Zhao, arXiv:2307.12359</u>

See talk by Patrizio Pucci

Bermudez Martinez, Vladimirov, arXiv:2206.01105

<u>Avkhadiev, Shanahan, Wagman, Zhao, arXiv:2307.12359</u>

See talk by Patrizio Pucci

CONNECTION WITH LATTICE QCD: TMDS

LPC collaboration, arxiv:2211.02340

CONNECTION WITH LHC PHYSICS: M_W

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	Γ_W	PS
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
m _T	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

Overview of m_w measurements

	,,		
I L L L (Combination			

7			ATLA	AS Coll	<u>ab. arX</u>	<u>iv:2403</u>	<u>3.1508</u>
-							
-							
]							
7.00	2	 	Lunai	Г			

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	е	μ	u_{T}	Lumi	Γ_W	PS
p_{T}^ℓ	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
m _T	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

Overview of $m_{\mu\nu}$ measurements

	,,		
I L L L (Combination			

ATLAS Collab. arXiv:2403.15085

Not taking into account the flavor dependence of TMDs can lead to errors in the determination of the W mass, of the order of a few MeVs

Bacchetta, Bozzi, Radici, Ritzmann, Signori, arXiv:1807.02101

.

The coupling constant of the strong force is determined from the transverse-momentum distribution of Z bosons produced in 8 TeV proton–proton collisions at the LHC and recorded by the ATLAS experiment.

ATLAS coll., arXiv:2309.12986

The coupling constant of the strong force is determined from the transverse-momentum distribution of Z bosons produced in 8 TeV proton–proton collisions at the LHC and recorded by the ATLAS experiment.

ATLAS coll., arXiv:2309.12986

by the ATLAS experiment.

ATLAS coll., arXiv:2309.12986

The coupling constant of the strong force is determined from the transverse-momentum distribution of Z bosons produced in 8 TeV proton–proton collisions at the LHC and recorded

 Table 1: Summary of the uncertainties in the
determination of $\alpha_s(m_Z)$, in units of 10^{-3} .

Experimental uncertainty	± 0.44			
PDF uncertainty	± 0.51			
Scale variation uncertainties	± 0.42			
Matching to fixed order	0	-0.08		
Non-perturbative model	+0.12	-0.20		
Flavour model	+0.40	-0.29		
QED ISR	± 0	.14		
N ⁴ LL approximation	± 0	.04		
Total	+0.91	-0.88		

by the ATLAS experiment.

account recent TMD results

ATLAS coll., arXiv:2309.12986

The coupling constant of the strong force is determined from the transverse-momentum distribution of Z bosons produced in 8 TeV proton–proton collisions at the LHC and recorded

 Table 1: Summary of the uncertainties in the
determination of $\alpha_s(m_Z)$, in units of 10^{-3} .

Experimental uncertainty	± 0.44			
PDF uncertainty	± 0.51			
Scale variation uncertainties	± 0.42			
Matching to fixed order	0	-0.08		
Non-perturbative model	+0.12	-0.20		
Flavour model	+0.40	-0.29		
QED ISR	± 0	.14		
N ⁴ LL approximation	±0	.04		
Total	+0.91	-0.88		

We try to always impose positivity limits. We prefer rigid and physical to flexible and unphysical

We try to always impose positivity limits. We prefer rigid and physical to flexible and unphysical

We try to always impose positivity limits. We prefer rigid and physical to flexible and unphysical The fraction of same/opposite helicities is the same at any transverse momentum

The quarks with the same helicity as the proton's have less transverse momentum

The quarks with the same helicity as the proton's have more transverse momentum

<u>Yang, Liu, Sun, Zhao, Ma, arXiv:2409.08110</u>

MAP collaboration, arXiv:2409.18078

USED DATASETS

Yang, Liu, Sun, Zhao, Ma, arXiv:2409.08110

_			
Experiment	Process	Data points	χ^2/N
HERMES[82]	$e^{\pm}p \to e^{\pm}hX$	84 (160)	0.72
$\mathrm{HERMES}[82]$	$e^{\pm}d \to e^{\pm}hX$	160(317)	0.71
CLAS[83]	$e^- p \to e^- \pi^0 X$	9(21)	1.43
Total		253 (498)	0.74

MAP collaboration, arXiv:2409.18078

Experiment	$N_{\rm dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \to \pi^+)$	47	1.34	1.30
HERMES $(d \to \pi^-)$	47	1.10	1.08
$\left[\text{HERMES } (d \to K^+)\right]$	46	1.26	1.25
$ \text{HERMES } (d \to K^-) $	45	0.93	0.89
HERMES $(p \to \pi^+)$	53	1.17	1.21
HERMES $(p \to \pi^-)$	53	0.86	0.86
Total	291	1.11	1.09

USED DATASETS

Yang, Liu, Sun, Zhao, Ma, arXiv:2409.08110

L			
Experiment	Process	Data points	χ^2/N
HERMES[82]	$e^{\pm}p \to e^{\pm}hX$	84 (160)	0.72
$\mathrm{HERMES}[82]$	$e^{\pm}d \to e^{\pm}hX$	160(317)	0.71
CLAS[83]	$e^- p \to e^- \pi^0 X$	9(21)	1.43
Total		253 (498)	0.74

More data needed

MAP collaboration, arXiv:2409.18078

Experiment	$N_{\rm dat}$	$\chi^2_{ m NLL}/N_{ m dat}$	$\chi^2_{ m NNLL}/N_{ m dat}$
HERMES $(d \to \pi^+)$	47	1.34	1.30
HERMES $(d \to \pi^-)$	47	1.10	1.08
$ \text{HERMES } (d \to K^+) $	46	1.26	1.25
$ \text{HERMES } (d \to K^-) $	45	0.93	0.89
$ \text{HERMES} (p \to \pi^+) $	53	1.17	1.21
$\left[\text{HERMES } (p \to \pi^-)\right]$	53	0.86	0.86
Total	291	1.11	1.09

EXPECTED DATA

Multidimensional binning needed

See talks by Tim Hayward, Bakur Parsamyan

SIVERS FUNCTION

$$\rho_{N^{\uparrow}}^{q}(x,k_{x},k_{y};Q^{2}) = f_{1}^{q}(x,k_{T}^{2};Q^{2}) - \frac{k_{x}}{M}f_{1T}^{\perp q}(x,k_{T}^{2};Q^{2})$$

In a nucleon polarized in the +y direction,

the distribution of quarks can be distorted in the x direction

Q^{2})

SIVERS FUNCTION

 $\rho_{N^{\uparrow}}^{q}(x,k_{x},k_{y};Q^{2}) = f_{1}^{q}(x,k_{T}^{2};Q^{2}) - \frac{k_{x}}{M}f_{1T}^{\perp q}(x,k_{T}^{2};Q^{2})$

In a nucleon polarized in the +y direction, the distribution of quarks can be distorted in the x direction $\int_{a}^{b} dt dt$

Bury, Prokudin, Vladimirov, arXiv:2103.03270

3D STRUCTURE IN MOMENTUM SPACE

Q=2GeV

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

3D STRUCTURE IN MOMENTUM SPACE

Q=2GeV

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

Bury, Prokudin, Vladimirov, arXiv:2103.03270

S-FIT OF SINGLE TRANSVERSE-3PT

Interesting work from the point of view of simultaneous use of several measurements, but still limited from other perspectives (lack of TMD evolution and knowledge of the unpolarized function)

SIVERS FUNCTION WITH NEURAL NETWORKS

Interesting work from the point of view of the use of Neural Networks, but still limited from other perspectives (lack of TMD evolution and knowledge of the unpolarized function)

Fernando, Keller, arXiv:2304.14328

SIVERS FUNCTION WITH NEURAL NETWORKS

Interesting work from the point of view of the use of Neural Networks, but still limited from other perspectives (lack of TMD evolution and knowledge of the unpolarized function)

Fernando, Keller, arXiv:2304.14328

See talks by Ishara Fernando

CONNECTION WITH ANGULAR MOMENTUM?

- Diehl & Kroll, arXiv:1302.4604
- Guidal et al., PR D72 (05) 054013
- Liuti et al., PRD 84 (11) 034007
- Bacchetta & Radici, PRL 107 (11) 212001

CONNECTION WITH ANGULAR MOMENTUM?

Diehl	&	Kroll,	arXiv:1302.4604
Diem	œ	KIOII,	arAiv.1502.4004

- Guidal et al., PR D72 (05) 054013
- Liuti et al., PRD 84 (11) 034007
- Bacchetta & Radici, PRL 107 (11) 212001

arXiv:2409.17955 (lattice)

CONNECTION WITH ANGULAR MOMENTUM?

Diehl & Kroll, arXiv:1302.4604 Guidal et al., PR D72 (05) 054013 Liuti et al., PRD 84 (11) 034007 Bacchetta & Radici, PRL 107 (11) 212001

arXiv:2409.17955 (lattice)

See also arXiv:1907.06960 for a critique

IMPACT OF RICH DATA?

Artistic view of factorization

Artistic view of factorization

Artistic view of factorization

Works for SIDIS, Drell-Yan, e⁻e⁺ annihilation

Artistic view of factorization

Works for SIDIS, Drell-Yan, e⁻e⁺ annihilation

Artistic view of factorization

Works for SIDIS, Drell-Yan, e⁻e⁺ annihilation

Artistic view of factorization

Works for SIDIS, Drell-Yan, e⁻e⁺ annihilation

TMD factorization does not work for pp to hadrons

Artistic view of factorization

Works for SIDIS, Drell-Yan, e⁻e⁺ annihilation

TMD factorization does not work for pp to hadrons

Artistic view of factorization

Works for SIDIS, Drell-Yan, e⁻e⁺ annihilation

TMD factorization does not work for pp to hadrons

Mulders, Rogers, arXiv:1001.2977

See talk by Oleg Eyser

In five to ten years

- TMD multiplicities for pions and kaons, off protons and deuterons, from COMPASS and JLab
- Drell-Yan and Z measurements from CERN, RHIC, FermiLab (COMPASS with pions)
- TMD multiplicities for pions and kaons in e⁺e⁻ from BELLE and BES
- Better understanding and control of higher-order QCD corrections
- More flexible functional forms, flavour dependence, at least two or three alternative extractions
- Use TMDs for something else (W mass... comparison with lattice... Wigner distributions...)

READY TO USE EIC DATA

slide from 2018 CPHI@Yerevan

51

In five to ten years

- COMPASS and JLab
 - Drell-Yan and Z measurements from CERN, RHIC, FermiLab (COMPASS with pions)
 - TMD multiplicities for pions and kaons in e⁺e⁻ from BELLE and BES

 - Better understanding and control of higher-order QCD corrections • More flexible functional forms, flavour dependence, at least two or three alternative extractions
 - Use TMDs for something else (W mass... comparison with lattice... Wigner distributions...)

READY TO USE EIC DATA

slide from 2018 CPHI@Yerevan

TMD multiplicities for pions and kaons, off protons and deuterons, from

In five to ten years

- COMPASS and JLab
 - Drell-Yan and Z measurements from CERN, RHIC, FermiLab (COMPASS with pions)
 - TMD multiplicities for pions and kaons in e⁺e⁻ from BELLE and BES

 - Better understanding and control of higher-order QCD corrections • More flexible functional forms, flavour dependence, at least two or three alternative extractions
 - Wigner distributions...)

READY TO USE EIC DATA

slide from 2018 CPHI@Yerevan

51

• TMD multiplicities for pions and kaons, off protons and deuterons, from

• Use TMDs for something else (W mass... comparison with lattice...

In five to ten years

- COMPASS and JLab
 - Drell-Yan and Z measurements from CERN, RHIC, FermiLab (COMPASS with pions)
 - TMD multiplicities for pions and kaons in e+e- from BELLE and BES

 - Better understanding and control of higher-order QCD corrections • More flexible functional forms, flavour dependence, at least two or three alternative extractions
 - Use TMDs for something else (W mass... comparison with lattice... Wigner distributions...)

READY TO USE EIC DATA

slide from 2018 CPHI@Yerevan

51

X X • TMD multiplicities for pions and kaons, off protons and deuterons, from

there can be differences in the implementation

The theory behind TMDs is well established for quarks at leading twist, but

- The theory behind TMDs is well established for quarks at leading twist, but there can be differences in the implementation
- Progress is ongoing concerning higher-twist and gluon TMDs

- The theory behind TMDs is well established for quarks at leading twist, but there can be differences in the implementation
- Progress is ongoing concerning higher-twist and gluon TMDs
- Extractions of unpolarized TMDs are reaching a good level of sophistication, but there are still several open questions and new data are needed

- The theory behind TMDs is well established for quarks at leading twist, but there can be differences in the implementation
- Progress is ongoing concerning higher-twist and gluon TMDs
- Extractions of unpolarized TMDs are reaching a good level of sophistication, but there are still several open questions and new data are needed
- For other TMDs, the study has started and there is an increasing number of new results, but more data are needed