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• What if the clusters don’t align with user interests?
• Solution: use a query log to determine important terms

– New distance metric: QKLD
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• Extract important terms from query log
• Cluster word embeddings of these terms

– E.g. word2vec, GloVe
• Use clusters as initial seed “documents”

– New initialization algorithm: QInit
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• How to prevent large skew in shard sizes?
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– Split large shards
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• Initial phase
– Sample and cluster

SIZE-BOUNDED SAMPLE-BASED CLUSTERING (SB² K-MEANS)
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• Initial phase
– Sample and cluster

• Split phase
– Re-cluster large shards

• Project phase
– Assign remaining documents

• Merge phase
– Combine small shards

SIZE-BOUNDED SAMPLE-BASED CLUSTERING (SB² K-MEANS)

This step is parallelizable!

[2] Kulkarni, A. 2013. Efficient and Effective Large-scale Search. Carnegie Mellon University.



• An open source implementation of SB² K-means
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• Use cases
– Verify and improve reproducibility of selective search papers
– Allow other parties to cluster documents for research or (search) applications
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