

Utilising Transformer Models for Controllable Scientific Abstractive Summarization

Sebastian Weidinger, Sarah Frank,
Andreas Wagner, Christian Gütl
Open Search Symposium 2024 - October 10, 2024

ISDS

Introduction

- Growing number of scientific publications
 - → information retrieval challenges
- Need for efficient summarization tools
 - Complex terminology
 - Long text
- Key challenges:
 - Domain specificity
 - Computational cost
 - Traceability

Problem Statement

- Traditional short-text models are insufficient for scientific texts
 - E.g. Only for news
- Scientific articles average 10.7k tokens vs. 1k tokens for news
- High computational costs
- Large input size
- Accuracy and traceability are crucial for scientific summaries

Motivation

- Efficient model
 - Low computational costs
 - Affordable performance and quality
- Length controllability
- Sufficient context size
 - > 11k tokens input size
- Capture scientific wording
 - Close to human-written text

Dataset Creation

- Created a new dataset:
 - OpenReview Contribution (1.7k)
 - Scraping OpenReview.net
 - Open-access platform for peer review
- Focus on computer science papers
 - e.g. NeurIPS, ICLR
- Multiple summary lengths of different reviewers
 - Controllable summarization
 - 7 summary lengths
 - Human-written summaries as gold standard

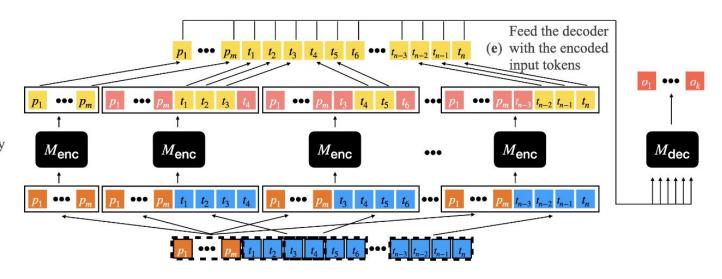
Proposed Solution - Model

- **SLED** (Ivgi, Shaham & Berant, 2022)
 - Short-Length Encoder Decoder
 - Efficient processing
 - Fusion-in-Decoder
 - Divides text into manageable chunks
 - Processes chunks separately
 - Merged in decoding step
 - Balances performance and computational cost
 - Increase input size e.g. 16k tokens
- Leverages short-text pretrained LMs
 - Context size of 1k tokens and ~139M parameters

SLED - Architecture

Gather encoded effective chunk (d) tokens (yellow) ignoring the context padding tokens (pink)

- (c) Encode each chunk independently (tie encoder weights)
- (b) Prepend the prefix tokens (orange) to each chunk
- (a) Split the input tokens (blue) into overlapping chunks



Proposed Solution - Architecture

Preprocessing

- Text extraction from scientific papers
- Add length prefix

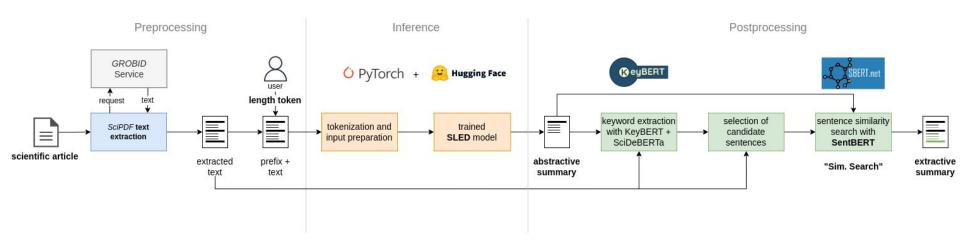
Inference

- SLED model
- Generation of abstract summary

Postprocessing

- Similarity Search ("Sim. Search")
 - SentBERT (Reimers & Gurevych, 2019)
- Generation of extractive summary

System Architecture



Experimental Setup - Model

- SLED
 - Comparison to extractive and abstractive methods
 - E.g. TextRank, BART and GPT-3.5
 - Performance and quality aspects
- SLED advantage
 - Fusion-in-decoder
 - Long-range dependencies
 - Low computational costs
 - Input size of 12k tokens with hardware settings used
 - RTX 3070
 - Memory 8 GB GDDR6

Experimental Setup - Model

- "Sim. Search"
 - Similarity search based on semantic search
 - Introduce simple traceability
 - Comparison to other extractive methods

Experimental Setup - Metric

- Performance comparison
 - ROUGE (Lin, 2004)
 - Lexical-based metric
 - O BERTScore (Zhang, Luan, & Liu, 2019)
 - Semantic-based metric
- Quality comparison
 - O UniEval (Liu & Liu, 2021)
 - Multidimensional deep learning-based evaluator
 - Automatic evaluation
 - Coherence, factual consistency, fluency and relevance

Experimental Setup

- Baseline models for performance comparison
 - O BART (Lewis et al., 2020)
 - 1k max. input tokens
 - TextRank (Mihalcea & Tarau, 2004)
 - Extractive method
- Additional GPT-3.5-turbo for quality comparison
 - Max. input size of 16k
- Dataset
 - OpenReview Contribution
 - Full or subset

Results & Findings - Performance

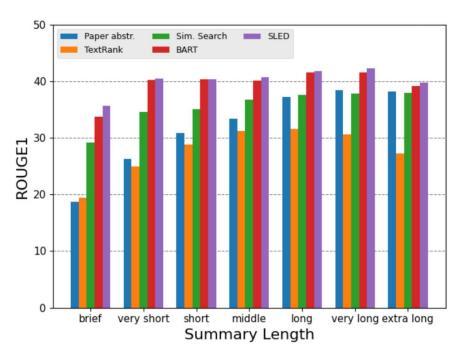
- SLED performance
 - Outperforms baseline models on long scientific documents
- Better results with controllable summary lengths
- High similarity to human-crafted summaries (BERTScore)

Performance

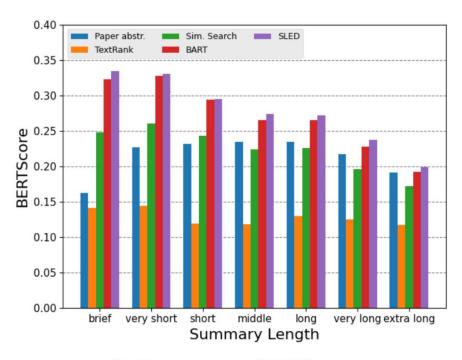
Comparison to human-written summaries

Method	Input source	Length signal	ROUGE1	ROUGE2	ROUGELsum	BERTScore
heuristic	paper abstr.	no	32.73	9.39	20.23	0.220
TextRank	full paper	no	29.09	6.21	19.26	0.114
TextRank	full paper	yes	30.95	6.52	20.41	0.128
Sim. Search	summ.+paper	yes	35.77	9.60	23.44	0.229
BART _{base}	1K tokens	yes	36.81	10.45	33.06	0.276
SLED _{base}	12K tokens	no	32.68	9.90	29.40	0.268
SLED _{base}	12K tokens	yes	36.95	10.81	33.12	0.282

Performance



(a) Comparison on ROUGE1.



(b) Comparison on BERTScore.

Results & Findings - Quality

- SLED comparable results to GTP-3.5 on quality
- **SLED** higher performance in **fluency** and **relevance** compared to human written texts
- Affordable performance

Quality

Comparison to human-written summaries

Method	Type	#Params	Coherence	Consistency	Fluency	Relevance	Average
paper abstr.	extr.	-	94.19	94.35	88.80	85.42	90.69
TextRank		-	40.36	68.28	76.71	35.82	55.29
Sim. Search		-	61.55	82.91	87.55	55.21	71.80
GPT _{zero-shot}	abstr.	~20B	92.37	84.47	91.63	91.52	90.00
BART _{base}		139M	90.22	82.84	86.11	86.81	86.49
SLED _{base}		139M	89.08	80.99	88.93	<u>87.54</u>	86.64

Key Insights

- Model efficiency
 - SLED offers an efficient approach with affordable performance vs. larger models (GPT-3.5)
- Length control
 - Enhances summarization accuracy
- Semantic Search
 - Improves reliability by identifying original sentences
 - Provides a good extractive summary

Conclusion & Future Work

Conclusion

- Dataset demonstrates high quality
- SLED is a strong option for long-document summarization balancing performance and cost

Future Work

Improve factual consistency and explore other efficient approaches

Q&A

Questions?

References

Ivgi, M., Shaham, U., & Berant, J. (2022). Efficient Long-Text Understanding with Short-Text Models.

Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. In *Text Summarization Branches Out* (pp. 74–81). Association for Computational Linguistics.

Zhang, T., Luan, Y., & Liu, J. (2019). BERTScore: Evaluating text generation with BERT. *In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval* (pp. 612-621). ACM.

Liu, Y., & Liu, S. (2021). UniEval: A Unified Framework for Text Generation Evaluation. *In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics* (Vol. 1, pp. 5310–5320). Association for Computational Linguistics.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Marjanovic, M., Stiennon, N., & Lowe, R. (2020). BART: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics* (pp. 7871–7880). Association for Computational Linguistics.

Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing* (pp. 3982–3992). Association for Computational Linguistics.

Mihalcea, R., & Tarau, P. (2004). TextRank: Bringing order into text. In *Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing* (pp. 404–411). Association for Computational Linguistics.

