Lattice Studies of **Conformal and Near-conformal Systems**

Anna Hasenfratz University of Colorado Boulder

Composite Higgs - Busan Workshop February 2024

Beyond the Standard Model

Composite Higgs models are attractive:

- describe EW symmetry breaking
- explain/predict Higgs mass
- BSM spectrum/dark matter/etc

Most (all?) feasible models require properties that only strongly coupled, near-conformal systems can satisfy

- Lattice studies are well suited to
- -identify suitable systems
- -describe their nonperturbative properties

Broadly, there are two (times two) possibilities:

Higgs: (A) Higgs is the σ isosinglet scalar, dilaton of broken scale symmetry - $f_{PS} = vev$ of standard model : predictive - very long "walking scaling" is needed - does it exist? (B) Higgs is pseudo Nambu-Goldstone boson : naturally light - $f_{PS} = vev/sin(\chi)$: less predictive

Fermion masses (two more): (A) generated by $(\bar{\psi}\psi)(\bar{\Psi}\Psi)$ interaction: very long "walking scaling" is needed (B) "partial compositeness" : generated by $(\psi)(\Psi\Psi\Psi)$: large anomalous dimension for YYY is needed

Broadly, there are two (times two) possibilities:

Higgs: (A) Higgs is the σ isosinglet scalar, dilaton of broken scale symmetry - $f_{PS} = vev$ of standard model : predictive - very long "walking scaling" is needed - does it exist? (B) Higgs is pseudo Nambu-Goldstone boson : naturally light - $f_{PS} = vev/sin(\chi)$: less predictive

Fermion masses (two more):

(A) generated by $(\bar{\psi}\psi)(\bar{\Psi}\Psi)$ interaction: very long "walking scaling" is needed (B) "partial compositeness" : generated by $(\psi)(\Psi\Psi\Psi)$: large anomalous dimension

for $\Psi\Psi\Psi$ is needed

Questions for Lattice :

is the system conformal/near conformal? (RG β function)

(A) Higgs is the σ isosinglet scalar, dilaton of broken scale symmetry - $f_{PS} = vev$ of standard model : predictive - very long "walking scaling" is needed - what controls it? (B) Higgs is pseudo Nambu-Goldstone boson : naturally light - $f_{PS} = vev/sin(\chi)$: less predictive

Fermion masses (two more):

(A) generated by $(\bar{\psi}\psi)(\bar{\Psi}\Psi)$ interaction: very long "walking scaling" is needed (B) "partial compositeness" : generated by $(\psi)(\Psi\Psi\Psi)$: large anomalous dimension

for $\Psi\Psi\Psi$ is needed

Questions for Lattice :

(A) Higgs is the σ isosinglet scalar, dilaton of broken scale symmetry - $f_{PS} = vev$ of standard model : predictive - very long "walking scaling" is needed - what controls it? (B) Higgs is pseudo Nambu-Goldstone boson : naturally light - $f_{PS} = vev/sin(\chi)$: less predictive

Fermion masses (two more):

for $\Psi\Psi\Psi$ is needed

- What are the anomalous dimensions? (RG γ function)

(A) generated by $(\bar{\psi}\psi)(\bar{\Psi}\Psi)$ interaction: very long "walking scaling" is needed (B) "partial compositeness" : generated by $(\psi)(\Psi\Psi\Psi)$: large anomalous dimension

5

What is Near-Conformal : Phases of gauge-fermion systems

 $SU(N_c) \text{ gauge with } N_f \text{ fundamental flavors}$ $\beta = \mu^2 \frac{dg^2}{d\mu^2} = b_0 g^4 + b_1 g^6 + \dots$ The coefficients of $\beta(g^2)$ are known perturbatively up to 5 loops $b_0 = \frac{1}{16\pi^2} \left(-\frac{11}{3}N_c + \frac{2}{3}N_f\right), \qquad b_1 = \frac{1}{(16\pi^2)} \left(-\frac{34}{3}N_c^2 + N_f \left(\frac{10}{3}N_c + \frac{N_c^2 - 1}{N_c}\right)\right)$ $b_2, \quad b_3, \dots \text{ depend on the RG scheme}$

Perturbatively: the IR fixed point emerges at $g_0^2 = \infty$ at $N_f = N^*$, moves to $g_0^2 = 0$ as $N_f \to N^{IF}$

Perturbatively: the IR fixed point emerges at $g_0^2 = \infty$ at $N_f = N^*$, moves to $g_0^2 = 0$ as $N_f \to N^{IF}$ **Nonperturbatively:** the IR fixed point could emerge at finite g_*^2 e.g.

$$\beta(g) \sim (\alpha - \alpha_*) - (g - g_*)^2$$

Kaplan et al PRD80,125005 (2009) L. Vecchi PRD82, 045013 (2010) Gorbenko et al JHEP10, 108 (2018)

Conformal or chirally broken?

SU(3) gauge + N_f fermions

Walking

Walking: Is it "walking" slow enough? At the sill: -Could be mass-split -or use the strong

conformal sill

conformal

Conformal → mass-split

- -Give mass to some flavors;
- -When decouple, χSB
- -Heavy mass controls "walking" and continuum limit

Conformal or chirally broken?

SU(3) gauge + N_f fermions

Walking

Walking: Is it "walking" slow enough? At the sill: -Could be mass-split -or use the strong

conformal sill

conformal

Conformal → mass-split

- -Give mass to some flavors;
- -When decouple, χSB
- -Heavy mass controls "walking" and continuum limit

Lattice studies:

We need to determine RG properties (β and γ functions) of the most promising models nonperturbatively

Simple enough, yet after 15+ years the opening of the conformal window is still debated

But we are on the verge (perhaps even beyond) of success:

- improved action that reduce lattice artifacts (Essential!)
- we have better RG methods

Taming lattice artifacts with PV bosons

$$S = \frac{6}{g_0^2} \sum_{p} ReTrV_{\Box} + \frac{1}{2} \sum_{n,\mu} \left(\bar{\psi}_n \gamma_\mu(n) U_\mu(n) \psi_{n+\mu} + cc \right) + am_f \sum_n \bar{\psi}_n \psi_n$$

Integrate out the fermions: an effective gauge action (hopping expansion)

$$S_{eff}^{(f)} = \frac{N_s}{(2am_f)^4} \sum_p ReTrV_{\Box} + c \frac{N_s}{(2am_f)^6} \sum_{6link} ReTrV_6 - link \cdots$$

Bare gauge coupling $\beta = 6/g_0^2$ decreases to compensate, leading to rough gauge configurations, large cutoff effects

AH, Shamir, Svetitsky, PRD104, 074509 (2021)

Taming lattice artifacts with PV bosons

Compensate with heavy Pauli-Villars bosons -same interaction as fermions but with *bosonic statistics*

$$\begin{split} S_{eff}^{(PV)} &= -\frac{N_s}{(2am_f)^4} \sum_p ReTrV_{\Box} - c\frac{N_s}{(2am_f)^6} \sum_{6link} S_{eff}^{(PV)} &< 0 \longrightarrow \beta = 6/g_0^2 \text{ increases;} \end{split}$$

- Keep $am_{PV} \sim \mathcal{O}(1)$ fixed: in the IR $(a \rightarrow 0)$ the PV bosons decouple (does not change physics)
- -range of effective gauge action is $\sim e^{2}$
- The PV action is just an "improved gauge action" :
 - add as many PV as you want
 - use any lattice action that you want (ex. naive fermions)

AH, Shamir, Svetitsky, PRD104, 074509 (2021)

*ReTrV*6-link····

	Similar to PV regulate
$xp(-2am_{PV})$	in continuum
action" .	

ors

Example: SU(3) with $N_f = 12$ fundamental flavors

- Compare different PV improvements plaquette value signals UV fluctuations at fixed physics (g^2)
- With PV improvement UV fluctuation significantly decrease —> more reliable continuum limit

Example: SU(3) with $N_f = 12$ fundamental flavors

- Compare different PV improvements plaquette value signals UV fluctuations at fixed physics (g^2)
- With PV improvement UV fluctuation significantly decrease —> more reliable continuum limit

Example: SU(3) with $N_f = 12$ fundamental flavors

- Compare different PV improvements plaquette value signals UV fluctuations at fixed physics (g^2)
- With PV improvement UV fluctuation significantly decrease —> more reliable continuum limit

Example: SU(3) with $N_f = 12$ fundamental flavors

- Compare different PV improvements plaquette value signals UV fluctuations at fixed physics (g^2)
- With PV improvement UV fluctuation significantly decrease —> more reliable continuum limit

Example: SU(3) with $N_f = 12$ fundamental flavors

- Compare different PV improvements plaquette value signals UV fluctuations at fixed physics (g^2)
- With PV improvement UV fluctuation significantly decrease —> more reliable continuum limit

Example: SU(3) with $N_f = 12$ fundamental flavors

- Compare different PV improvements plaquette value signals UV fluctuations at fixed physics (g^2)
- With PV improvement UV fluctuation significantly decrease —> more reliable continuum limit

RG Method: Gradient flow

Gradient flow (GF) is a continuous, invertible smoothing transformation

GF resembles RG block spin, but it is not an RG transformation However

- in infinite volume
- for *local* operators
- it can be *interpreted* as

continuous real space RG

 $g_{GF}^2 = \mathcal{N}t^2 < E(t) > \implies \beta_{GF}(a; g_{GF}^2) =$

- $\mathcal{O} = \bar{\psi}(x)\Gamma\psi(x)$ or $G_{\mathcal{O}}(x_4, t) = \langle \mathcal{O}(\bar{p} = 0, x_4; t) \mathcal{O}(\bar{p} = 0, 0; t = 0) \rangle_{\mu}$

- remove η_w by dividing with the vector correlator

Luscher JHEP 08 (2010) 071

with
$$\mu \propto 1/\sqrt{8t}$$

$$- t \frac{dg_{GF}^2(a;t)}{dt}$$

- $\implies t \frac{d\log G_{\mathcal{O}}(t, x_4)}{dt} = d_{\mathcal{O}} + \gamma_{\mathcal{O}}(t) + \eta_{\psi}(t)$

RG Method: Gradient flow

Gradient flow (GF) is a continuous, invertible smoothing transformation

GF resembles RG block spin, but it is not an RG transformation However

- in infinite volume
- for *local* operators
- it can be *interpreted* as

continuous real space RG

$$- g_{GF}^2 = \mathcal{N}t^2 < E(t) > \implies \beta_{GF}(a; g_{GF}^2) =$$

- $\mathcal{O} = \bar{\psi}(x)\Gamma\psi(x)$ or $G_{\mathcal{O}}(x_4, t) = \langle \mathcal{O}(\bar{p} = 0, x_4; t) \rangle$

 $t \frac{d \log G_{\mathcal{O}}(t, x_4)}{d t}$

- remove η_{ψ} by dividing with the vector correlator

Luscher JHEP 08 (2010) 071

A. Carosso, AH, E. Neil, PRL 121,201601 (2018)

Sonoda, H., Suzuki, H. PTEP,023B05 (2021)

with
$$\mu \propto 1/\sqrt{8t}$$

 $-t \frac{dg_{GF}^2(a;t)}{dt}$

t)
$$\mathcal{O}(\bar{p} = 0,0; \mathbf{t} = \mathbf{0}) \rangle_{\boldsymbol{t}}$$

$$\frac{4}{2} = d_{\mathcal{O}} + \gamma_{\mathcal{O}}(t) + \eta_{\psi}(t)$$

The continuous β function (CBF)

GF renormalized coupling: $g_{GF}^2(t) = \mathcal{N}t^2 \langle E(t) \rangle$

• $\langle E \rangle \propto (\Box U - 1)$ or (Clover) etc RG β function :

 $\beta(g_{GF}) = -t \frac{dg_{GF}^2}{dt}$

The RG picture is valid only

- in infinite volume limit : extrapolate in $(a/L)^4 \rightarrow 0$ while $\sqrt{8t} \ll L$
- in $am_f = 0$ chiral limit : extrapolate $am_f \rightarrow 0$ (only in confining regime)

Continuum limit :

• $t/a^2 \rightarrow \infty$ while keeping g_{GF}^2 (or t) fixed

Same approach as $N_f = 0,2$

AH, O. Witzel, *Phys.Rev.D* 101 (2020) 3 Fodor et al, EPJWeb Conf. 175, 08027 (2018

AH,C.Peterson, O.Witzel, J.VanSickle Phys.Rev.D 108 (2023) 1

14

Lattice results

Some recent results:

- SU(3) $N_f = 12$ fundamental flavors with staggered fermions β function
- SU(3) $N_f = 10$ fundamental flavors with Wilson fermions β and γ_m functions
- SU(4) 4+4 sextet+fundamental flavors, Wilson fermions β and γ_m and $\gamma_{chimera}$
- SU(3) $N_f = 8$ fundamental flavors with staggered fermions
 - could that be the opening of the conformal window?

15

$N_f = 12$ fundamental flavors

New simulations with PV action : small cutoff effects stable extrapolations

 $a^2/t \rightarrow 0$ continuum limit

A.H., C. Peterson, in preparation

Volume up to L=40; mild dependence

 $\beta(g^2)$ interpolation

$N_f = 12$ fundamental flavors (staggered)

New simulations with PV action :

- weak coupling matches 2-loop/3-loop GF prediction
- stable IRFP consistent with old (no PV, step scaling) result

A.H., C. Peterson, in preparation

- slope $\gamma_{IRFP}^* = 0.210(36)$ is consistent, with old resut, close to perturbative prediction

 $g_{IRFP}^2 \approx 7$: not even strongly coupled

Interpret it either:

- PV action has the same IR as no PV or:

- old simulations and analysis were correct A.H., D. Schaich, JHEP 02 (2018) 132

$N_f = 10$ fundamental flavors (Wilson fermions)

A.H., Neil, Shamir, Svetitsky, Witzel, *Phys.Rev.D* 108 (2023) 7

New simulations

-add PV bosons : opens parameter space from $g^2 \approx 10$ to $g^2 \gtrsim 25$ -use several gradient flow actions: find RT close to simulation action (but Gaussian FP to IRFP is universal)

 $g_{IRFP}^2 \approx 15$: getting strongly coupled

18

$N_f = 10$ fundamental flavors (Wilson fermions)

A.H., Neil, Shamir, Svetitsky, Witzel, *Phys.Rev.D* 108 (2023) 7

New simulations

-add PV bosons : opens parameter space from $g^2 \approx 10$ to $g^2 \gtrsim 25$ -use several gradient flow actions: find RT close to simulation action (but Gaussian FP to IRFP is universal)

 $g_{IRFP}^2 \approx 15$: getting strongly coupled

18

$N_f = 10$ fundamental flavors - anomalous

IRFP at $g^2 \simeq 15$

A.H., Neil, Shamir, Svetitsky, Witzel, *Phys.Rev.D* 108 (2023) 7

Anomalous dimension $\gamma_m^* \simeq 0.60$ (not even close to the conformal sill)

$N_f = 10$ fundamental flavors - anomalous

IRFP at $g^2 \simeq 15$

A.H., Neil, Shamir, Svetitsky, Witzel, *Phys.Rev.D* 108 (2023) 7

Anomalous dimension $\gamma_m^* \simeq 0.60$ (not even close to the conformal sill)

Composite Higgs+Partial composite top in SU(4) 2-rep model A.H.,Neil,

Theory space: N_f sextet (composite Higgs) +fundamental(chimera baryon) black square: 2+2 model :old

open circle: 4+4 model : new

A.H., Neil, Shamir, Svetitsky, Witzel, Phys.Rev.D 107 (2023) 11, 114504

Simulations: Wilson fermions + PV boson and several GF action IRFP at $g^2 \simeq 16$

Composite Higgs+Partial composite top in a 2-rep model A.H.,Neil,

Mass anomalous dimension: not far from the conformal sill A.H., Neil, Shamir, Svetitsky, Witzel, Phys.Rev.D 107 (2023) 11, 114504

Chimera anomalous dimension: but partial compositeness is not supported

21

$N_f = 8$ fundamental - staggered fermions

A.H. PRD 106 (2022) 014513 Despite of "common knowledge" (belief?), there is no evidence that SU(3) with 8 fundamental fermions is chirally broken

FIG. 11. Two different presentations of the spectrum from Tab. IX. On the left, in units of the lattice spacing a vs. a chiral expansion parameter assuming conformal symmetry and $\gamma^* \approx 1$. On the right, in units of the chiral breaking scale $4\pi \widehat{F}_{\pi_5}$ vs. a chiral expansion parameter assuming spontaneous chiral symmetry breaking. The dotted line on the right indicates the energy threshold for decays to two pions.

LSD Collaboration e-Print: 2306.06095 *Phys.Rev.D* 108 (2023) 9

Compare to Maurizio's plot yesterday

$N_f = 8$ fundamental - staggered fermions

Despite of "common knowledge" (belief?), there is no evidence that SU(3) with 8 fundamental fermions is chirally broken

Most simulations are limited by a lattice first-order bulk transition

A.H. PRD 106 (2022) 014513

LSD Collaboration e-Print: 2306.06095 *Phys.Rev.D* 108 (2023) 9

Simulations probe only weak coupling regime Properties of IRFP/walking is not observable

 $N_f = 8$ fundamental - staggered fermions

Despite of "common knowledge" (belief?), there is no evidence that SU(3) with 8 fundamental fermions is chirally broken

Most simulations are limited by a lattice first-order bulk transition PV improved actions reach stronger couplings and show a different picture

 $N_f = 8$ with staggered fermions (Dirac-Kaehler!) is special:

- -free of all 't Hooft anomalies
- -does not have to satisfy anomaly matching
 - -> no spontaneous chiral symmetry breaking necessary

A.H. PRD 106 (2022) 014513

LSD Collaboration e-Print: 2306.06095, *Phys.Rev.D* 108 (2023) 9

Catterall et al PRD104,014503 (2021) Catterall PRD107,014501 (2022) Catterall <u>2311.02487</u> (D. Tong in continuum+ lots of stat. mech)

$N_f = 8$: order of phase transition

renormalized coupling at $\mu = c/L$

*Berezinsky, Kosterlitz, Thouless

A.H. PRD 106 (2022) 014513

- Simulations with improved gauge action show a phase transition with 8 flavors - Finite size scaling from strong coupling might suggest BKT* transition: $\xi \propto e^{-\zeta(\beta-\beta_c)^{-\nu}}$

Finite size scaling/curve collapse of renormalized coupling

 $N_f = 8: \beta$ function

If the phase transition is BKT, this could indicate the opening of the conformal window

A.H., C. Peterson, in prep

Preliminary numerical result (blue: no PV)

 $N_f = 8$: spectrum

Two phases: weak coupling: conformal strong coupling: chirally symmetric but gapped

pseudo scalar mass at $m_f = 0$:

(conformal)

Cheng et al *Phys.Rev.D* 85 (2012) A.H. PRD 106 (2022) 014513

SMG: Volume independent PS is massive even when $L \rightarrow \infty$

Symmetric mass generation

SMG is a new paradigm:

SMG phase is confining, gapped, but chirally symmetric

- spectrum is parity doubled
- possible only without 't Hooft anomalies
- $N_f = 8$ continuum or 2 sets of staggered fields are anomaly free - could be SMG

Ayyar, Chandrasekharan PRD91,065035 (2015) Catterall et al PRD104,014503 (2021) Catterall PRD107,014501 (2022) A.H. PRD 106 (2022) 014513 D. Tong, JHEP 007(2022)001 Wu, Young,

Summary: Composite Higgs and (near-)conformal systems

Lattice simulations have come a long way:

-gauge action improvement: Pauli-Villars fields -renormalization group β and γ functions paint a consistent picture

Theoretical developments - SMG - point beyond the lattice

EXTRA SLIDES

Gauge-fermion systems with 4-fermion interaction

- Quantum effects generate new interaction
- Conjectured phase diagram in the extended parameter space

Staggered fermions

are Kaehler-Dirac fermions distributed in a 2⁴ hypercube

$$S = \frac{1}{2} \sum_{n,\mu} (\bar{\chi}_n \alpha_\mu(n) U_\mu(n) \chi_{n+\mu} + cc) + m \sum_n \bar{\chi}_n \chi_n , \qquad \alpha_\mu(n) = (-1)^{n_0 + \dots + n_{\mu-1}}$$

- χ : 1-component fermion
- 1 set of staggered fermions \equiv 4 Dirac flavors in flat space, $g_0^2 = 0$ 2 sets of massless staggered fermions \equiv 4 sets of reduced staggered

Massless staggered fermions suffer from Z_4 gauge anomaly - cancelled when 2 staggered species are present ->2 staggered species could exhibit symmetric mass generation : mass without spontaneous symmetry breaking

Becher, Joos 1982

 \equiv 16 Weyl fermions

Catterall et al 2101.01026

S4 phase gapped, chiral symmetric

Zero momentum correlators $C(t) = \sum_{i=1}^{n} C(t)$ $\overline{x}, \overline{y}$

"Pion states" : spin \otimes taste in terms of 1-component fields pseudoscalar : $P1 = \gamma_5 \otimes \gamma_5$: $\mathcal{O}_S = \sum_{\bar{x}} \bar{q}(\bar{x}) q(\bar{x}) (-1)^{x_1 + x_2 + x_3}$ scalar : $S1 = \gamma_0 \gamma_5 \otimes \gamma_0 \gamma_5$: $\mathcal{O}_S = \sum_{\bar{x}} \bar{q}(\bar{x}) q(\bar{x})$ pseudoscalar : $P2 = \gamma_5 \otimes \gamma_i \gamma_5$: $\mathcal{O}_S = \sum_{\bar{x}} \bar{q}(\bar{x}) U_i(\bar{x}) q(\bar{x}+i)(-1)^{x_1 + x_2 + x_3}$ scalar : $S2 = \gamma_0 \gamma_5 \otimes \gamma_0 \gamma_i \gamma_5$: $\mathcal{O}_S = \sum_{\bar{x}} \bar{q}(\bar{x}) U_i(\bar{x}) q(\bar{x}+i)(-1)^{x_1 + x_2 + x_3}$

(all four operators couple to scalar and pseudoscalar, but mostly to one only)

$$\langle O_S(\bar{x}, t=0)O_S(\bar{y}, t) \rangle$$

S4 phase chiral symmetric

"Pion" correlators

S4 phase - chirally symmetric (P = S) - P1-P2, S1-S2 are broken

Conformal phase

- chirally symmetric (P = S)
- P1,P2, S1,S2 are nearly degenerate (good taste symmetry)

S4 phase gapped

"Pion" masses

S4 phase :mesons are massive
nearly constant in fermion mass
nearly independent of volume

Conformal phase :mesons are massive

- due to finite volume!
- all masses vanish in the infinite volume chiral limit