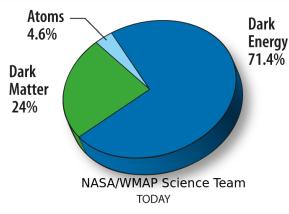
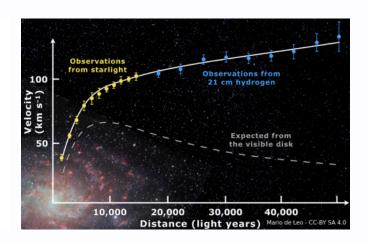
Composite Dark Matter from Sp(2N) gauge theory

Fabian Zierler

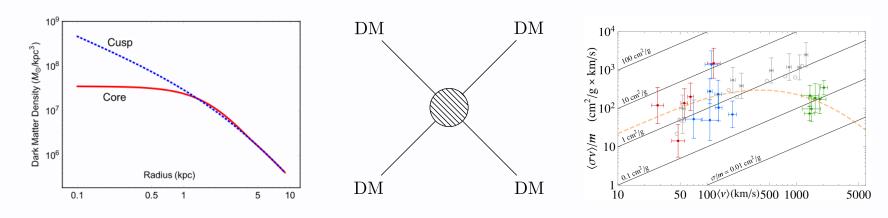

Busan, February 20, 2024


PNU workshop on Composite Higgs Physics


1. QCD inspired Dark Matter models

Dark Matter - Why?

- Strong observational evidence at many scales! [1]
- Modified Gravity [2] is a potential alternative
- New particles beyond the Standard Model (BSM) promising!



Dark Matter properties

- DM self-interaction phenomenologically allowed^[1] and potentially relevant for small-scale structure problems
 - \circ non-vanishing scattering cross-sections $\sigma_{\mathrm{2DM} o 2\mathrm{DM}}$
 - \circ velocity dependence of $\sigma_{\mathrm{2DM} o \mathrm{2DM}}$ preferred

QCD-like Dark Matter can those provide self-interactions!

Strongly Interacting Gauge Theories in DM Models

- With fermions: Global symmetries make DM stable
- With mediator: Dark sector coupled to SM

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
DM \\
DM \\
DM
\end{array}
\end{array}
\begin{array}{c}
\text{mediator} \\
DM
\end{array}
\end{array}$$

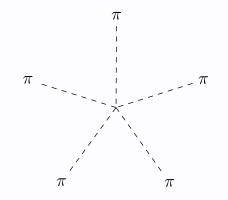
$$\mathcal{L}_{\text{DM}} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\psi}_f(i\not\!\!D + m_f)\psi_f$$

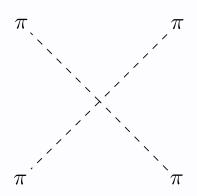
• Non-vanishing self-scattering cross-section arise

$$\langle v\sigma_{\pi\pi\to\pi\pi}\rangle \neq 0$$

• Relic density driven by strong processes

Dark meson scattering: Determine DM relic density


- Any model must predict the current density of DM correctly
 - \circ number density n can be calculated using Boltzmann equations


$$\partial_t n + 3Hn = f(\langle v \sigma_{
m number\ changing}
angle)$$

- ullet Cross-sections $\langle \sigma v
 angle$ are input for Boltzmann equations
 - describe non-equilibrium dynamics
 - \circ H is the Hubble rate

Relevant pion scattering channels

- ullet $3\pi o 2\pi$ (semi-annihilation) $^{[1]}$
- $2\pi o 2\pi$ (self-scattering)
 - \circ self-scattering among DM $^{\lfloor 2
 floor}$
 - \circ resonant enhancements $^{[3]}$
- ullet $2n\pi
 ightarrow 2\pi$ (multi-hadron bound states) $^{[4]}$

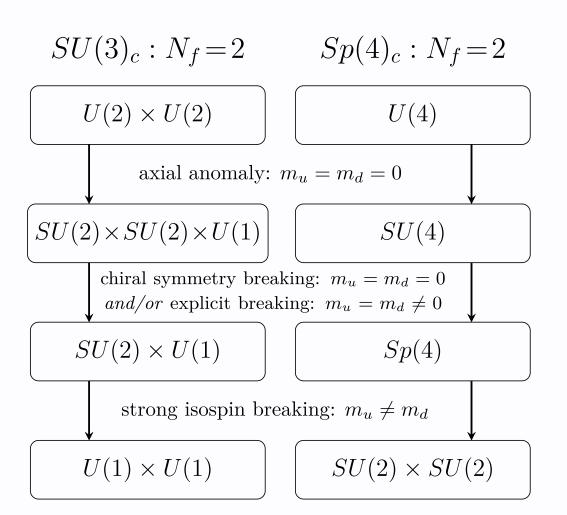
Strongly Interacting Massive Particles (SIMPs)

- ullet Depletion via $3\mathrm{DM} o 2\mathrm{DM}$ $^{[1]}$, i.e. $3\pi o 2\pi$
 - \circ same as $KK o 3\pi$ in QCD $^{[2]}$
 - \circ Early universe: $\mathrm{SM}
 ightleftharpoons \mathrm{DM}$ equilibrium
 - Dark matter depletion process: freeze-out
- $_{\pi} \sim {\cal O}(100) {
 m MeV} {\cal O}(1) {
 m GeV}$

Dark Matter with 3DM \rightarrow 2DM depletion and self-interactions

Other mass scales than QCD are relevant!

- ullet Lagrangian has two free parameters: g^2 and m_f
 - one overall energy scale
 - one intrinsic strong scale
- Overall scale should allow sufficiently heavy DM
- ullet m_f should lead to parametrically light m_π
 - both scales can deviate strongly from QCD!


Lattice investigations of a larger parameter space are useful!

[1] Hochberg et. al. [1411.3727] [1512.07917] [2] Choi et.al. [1801.07726] Bernreuther et.al. [2311.17157] [3] Kulkarni et.al. [2202.05191]

Other relevant channels see also Hansen et.al. [1507.01590]

- ullet decay to Standard Model: $2\pi o SM$ $^{[1]}$
- ullet involvement of vector mesons: $\pi\pi o\pi
 ho$, $3\pi o\pi
 ho$ $^{[2]}$
- ullet influence of light singlets: $\eta'\eta' o\pi\pi,\pi\pi o\eta'\pi$, \dots $^{\lfloor 3
 floor}$
- The relevance depends on the spectrum
 - o investigation of the meson spectrum important
 - lattice investigations inform EFT construction

[1] Kosower (Phys.Lett.B. 1984)
[2] Hochberg et. al. [1411.3727] [1512.07917]

SIMPs from Sp(4) gauge theory

- Pseudo-real representation: [1]
 - ⇒ more pseudo-Goldstones
 - \Rightarrow no fermionic bound states
- ullet $N_f=2$: exactly 5 Goldstones
 - \circ Allows $3\mathrm{DM} o 2\mathrm{DM}$ $^{[2]}$

Sp(4) with two fermions is a minimal SIMP DM realisation

Lagrangian of $Sp(4)_{\it c}$ with fermions

$${\cal L}_{Sp(4)} = -rac{1}{4} F_{\mu
u} F^{\mu
u} + \sum_{f=u,d} ar{\psi}_f (i
ot\!\!\!/ p + m_f) \psi_f$$

• Higher symmetry than QCD-like theories

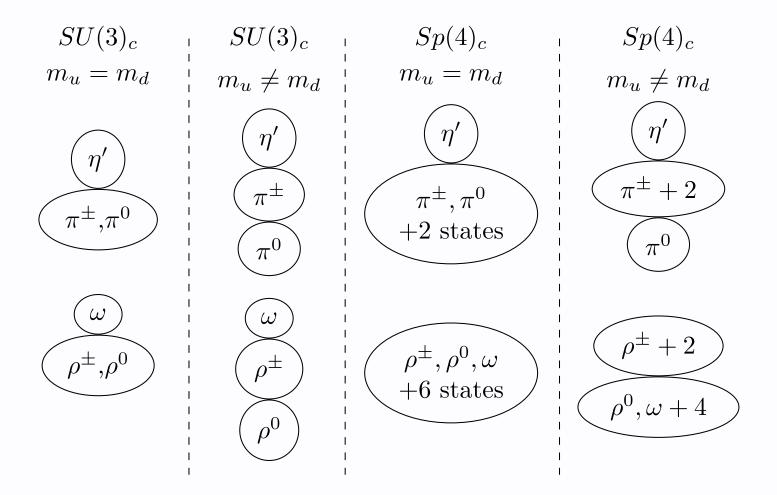
$$\Psi = egin{pmatrix} u_L \ d_L \ -SCu_R^* \ -SCd_R^* \end{pmatrix} = egin{pmatrix} u_L \ d_L \ ilde{u}_R \ ilde{d}_R \end{pmatrix} & C \dots ext{charge conj.} \ S \dots ext{colour matrix} \end{pmatrix}$$

$$\mathcal{L}_{Sp(4)} = iar{\Psi}
ot\!\!/ \Psi - rac{1}{2} \left(\Psi^T SCM\Psi + h.c.
ight) - rac{1}{4} F_{\mu
u} F^{\mu
u}$$

ullet generators au_a in fundamental repr. $:S au_aS=- au_a^T$

Meson multiplets of $Sp(4)_c$ with $N_f=2$

- ullet Extra gauge invariant states: $q^T \dots q$ and $ar q \dots ar q^T$
- ullet $Sp(2N_f)$ flavour symmetry


$$Sp(4)_F: \qquad 4\otimes 4=1\oplus 5\oplus 10$$

ullet Different multiplets depending on J^P number

$$5\pi, 10\rho, 5a_0, 5a_1, 1\eta', 1\sigma, 0\omega$$

The global symmetries lead to a richer meson multiplet structure!

Pseudoscalar (PS) and vector (V) multiplets

The same patterns persist for other channels.

BSM wishlist from the lattice

- 1. Masses and decay constants of dark hadrons
 - Non-singlet and singlet mesons, glueballs
- 2. Scattering of dark pions
 - $\circ~2\pi
 ightarrow2\pi$ for self-interaction crossection
 - $\circ~3\pi
 ightarrow2\pi$ for SIMP semi-annihilation
- 3. Applicability of χ PT and related EFTs

[1]Nogradi,Szikszai[2107.05996][2]Bennett et.al.[2010.15781][3]Bennett et.al.[2202.05516],Drach et.al.[2107.09974]

[4] e.g. Boz. et.al. [1912.10975], [5] Mason et.al. [2310.02145]

Applications of Sp(2N) gauge theory beyond SIMP DM

- Generic features of non-Abelian confining gauge thoeries
 - \circ Hadron masses as functions of N_f and N_c $^{[1]}$
 - \circ large N_c limit $^{[2]}$
- Higgs compositeness, partial top compositeness [3]
 - Mixed fermion representations: near conformal behaviour?
- ullet Model theory for finite density calculations (no sign problem) $^{[4]}$
- Finite temperature behaviour: Deconfinemt and chiral symmetry
 - \circ Potential first oder phase transitions? $^{[5]}$

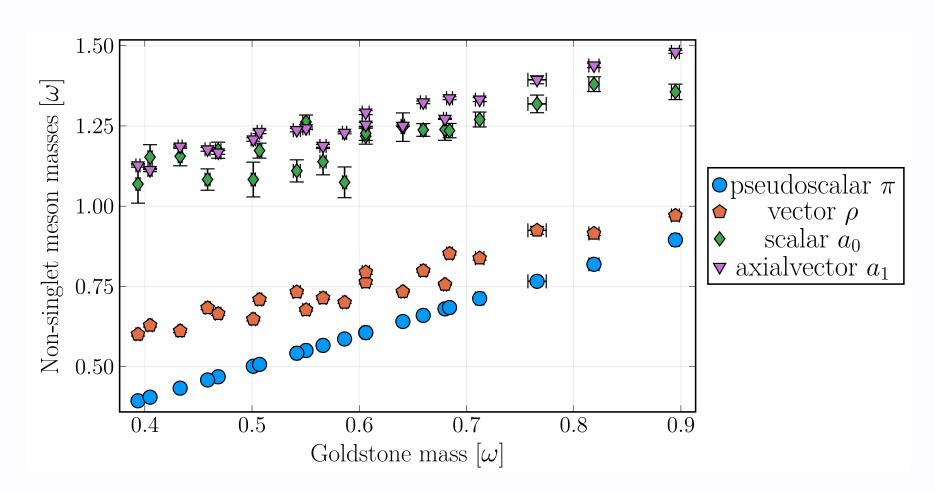
Composite Higgs studies can be repurposed

- Coset spaces for Higgs physics are large enough for SIMP DM
 - \circ applies also to different fermion reps. (e.g. $Sp(4), N_f^{as} \geq 2$)
 - or mixed representation theories
- Particle spectrum determines relevant hadronic states
- ullet Scattering studies in the context of WW scattering

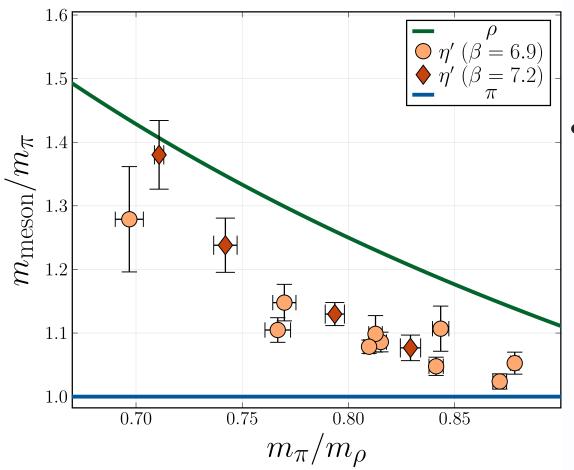
Lattice Investigations:

Quantitative Insights

Lattice spectroscopy: Getting meson masses


- Construct operator with same quantum numbers
- Energy levels from Euclidean correlator

$$C_{\mathcal{O}}(t) = \sum_n rac{1}{2E_n} \langle 0|\mathcal{O}|n
angle^* \langle n|\mathcal{O}|0
angle e^{-E_n t}.$$


• For mesons a generic correlator

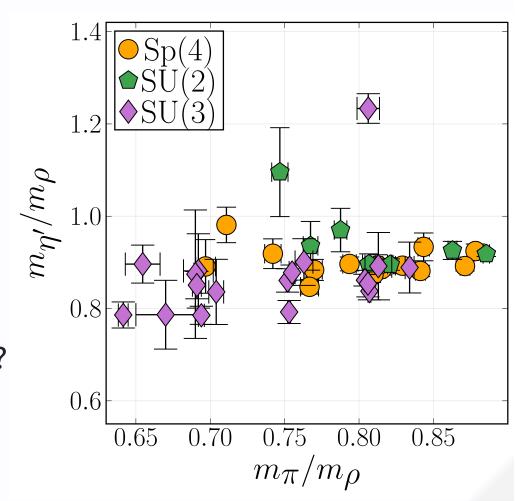
$$C(t-t') = \sum_{\vec{x},\vec{y}} \left(\underbrace{\vec{x},t} \right) + \underbrace{\vec{x},t} \right) + \underbrace{\text{const.}}_{=|\langle 0|O|0\rangle|^2}$$

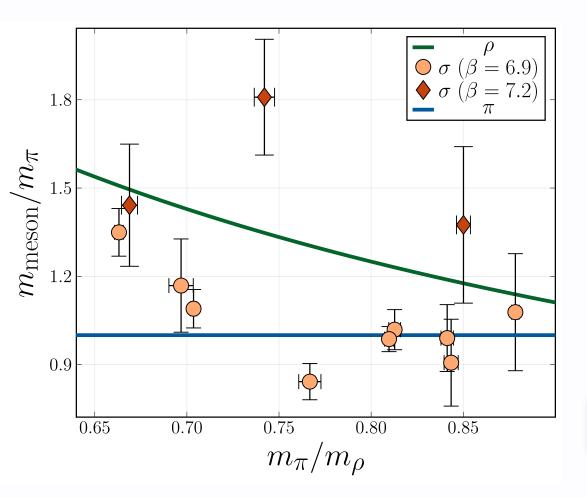
Non-singlet spectrum

The pseudoscalar and vector mesons are the lightest non-singlets.²⁰

The pseudoscalar singlet η' is surprisingly light!

- Phenomenologically relevant:
 - \circ $m_
 ho > m_{\eta'}$ different from QCD
 - o relevant low-energy dof
 - \circ η' relevant for $\pi\pi$ scattering
 - more accessible channels for decays into SM


Interesting! Is this surprising?

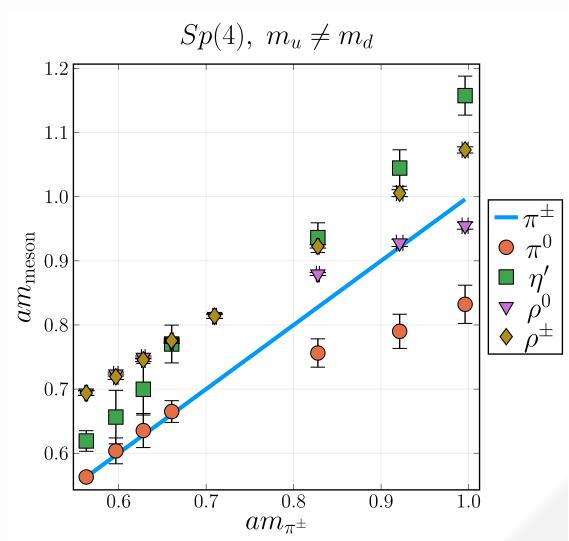

Consider different theories:

- ullet Large N_c : $m_{\eta'}-m_\pi \propto N_f/N_c$
 - $\circ~N_f=2$ could be "small"
 - $\circ~N_c=4$ could be "large"

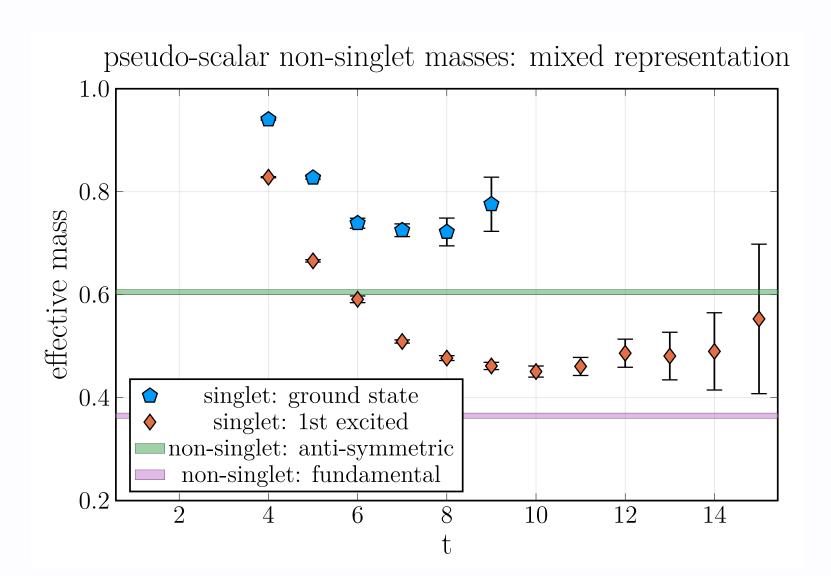
SU(2) and SU(3) comparison:

- ullet Similarities:generic $N_f = 2$ feature?
- ullet QCD: strong N_f dependence
- ullet Differences may arise $m_\pi/m_
 ho o 0$ mass driven by flavour content!

The scalar singlet σ


- Strong finite spacing effects!
- ullet Potentially light state below $2m_\pi$ threshold
- Unclear systematics

Overall, inconclusive results.


[1] Bennett et. al. [2304.07191] Kulkarni al. [2202.05191]

Non-degenerate fermions

- Different mass hierarchies
- Transition from a flavoursymmetric theory to a heavy-light system
- One light and one heavy
 pseudoscalar flavour-singlet

Pseudoscalar (non-)singlets: mixed representation

Consequences for Dark Matter

- ullet Mass hierarchies: limit χ PT validity
 - \circ inclusion of other states than π required, e.g. η' and ho
 - additional tests needed (fermions are too heavy)
- ullet Light unprotected states η', π^0 allow decays into SM
 - no protection from symmetry

Are these fermion masses phenomenologically relevant?

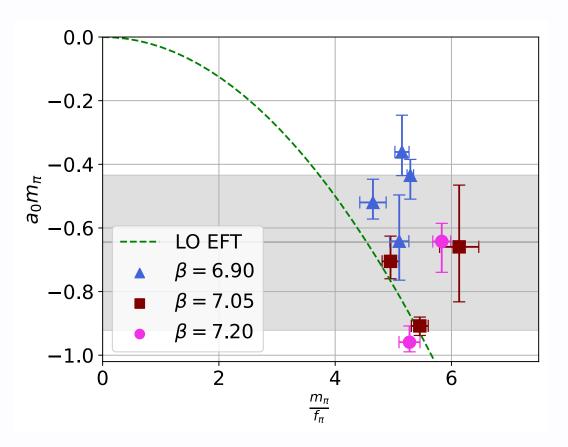
Dark Matter Scattering on the Lattice

- Pions are in the 5-dimensional representations
- A two pion scattering is in one of three irreps

$$5 \times 5 = 14 \oplus 10 \oplus 1$$

- Corresponds to the usual QCD channels
 - $\circ~14\Leftrightarrow$ isospin I=2 in QCD, e.g. $\pi^+\pi^+$
 - $\circ~10 \Leftrightarrow \mathsf{isospin}~I=1~\mathsf{in}~\mathsf{QCD}$, e.g. $\pi\pi o
 ho$
 - $\circ~0\Leftrightarrow$ isospin I=0 in QCD, e.g. $\pi\pi o\sigma/f_0$

Scattering information from the lattice [1] M. Lüscher (Nucl.Phys.B 1991)


ullet Scattering phase shift $\delta_0(p)$ from finite volume energy

$$an(\delta_0(q)) = rac{\pi^{rac{3}{2}}q}{\mathcal{Z}_{00}^{ec{0}}(1,q^2)}, \quad q = p^*rac{L}{2\pi}$$

$$\cosh\left(rac{E_{\pi\pi}}{2}
ight) = \cosh(m_{\pi\pi}) + 2\sin\left(rac{p^*}{2}
ight)^2$$

- Low-velocity behaviour: Scattering length
 - \Rightarrow relation between $\pi\pi$ energy $E_{\pi\pi}$ and m_π on a lattice $^{[1]}$

$$oxed{\delta E_{\pi\pi} \over m_\pi} = rac{4\pi m_\pi a_0}{(m_\pi L)^3} \left(1 + c_1 rac{m_\pi a_0}{m_\pi L} + c_2 \left(rac{m_\pi a_0}{m_\pi L}
ight)^2
ight)$$

First investigation of isospin-2 scattering

- ullet repulsive $\pi\pi$ interaction
- few lattice energy levels available \Rightarrow systematics
- finite volume effects present
- roughly matches ChiPT

Summary

- ullet Full light hadron spectrum of two-flavour Sp(4)
 - \circ surprisingly light η' , potentially light σ
 - o input for EFTs: masses and decay constants
 - \circ first determination of isospin-2 $\pi\pi$ scattering

Outlook

- ullet Full scattering analysis of $2\pi o 2\pi$ and $3\pi o 2\pi$
- Better understanding of singlets and scattering states:
 Reduce lattice artefacts
- Spectroscopy closer to the chiral limit

Thank you