

Phenomenology of composite resonances in realistic composite Higgs models

Giacomo Cacciapaglia IP2I Lyon, France

@ PNU workshop, 2024/02/22 Busan

Composite Higgs models 101

- o Symmetry broken by a condensate (of TC-fermions)
- Higgs and longitudinal Z/W emerge as mesons
 (pions)

Scales:

f: Higgs decay constant

v: EW scale

 $m_{
ho} \sim 4\pi f$

EWPTs + Higgs coupl. Limit:

$$f \gtrsim 4v \sim 1 \text{ TeV}$$

Composite Higgs models 101

How can light states emerge?

	Top loops	Gauge Loops W, Z	TC-fermion masses
ϕ	$\sim y_t^2 f^2$	$\sim g^2 f^2$	$\sim m_{\psi} f$
h (h massless for vanishing v)	$\sim y_t^2 f^2 s_{ heta}^2 = y_t^2 v^2$	$\sim g^2 f^2 s_{ heta}^2 = g^2 v^2$	X
a	X		$\sim m_{\psi} f$ This can be small!

The partial compositeness paradigm

Kaplan Nucl. Phys. B365 (1991) 259

$$\frac{1}{\Lambda_{\rm fl.}^{d-1}} \, \mathcal{O}_H q_L^c q_R$$

$$rac{1}{\Lambda_{
m fl.}^{d-1}}\,{\cal O}_H q_L^c q_R \qquad \qquad \Delta m_H^2 \sim \left(rac{4\pi f}{\Lambda_{
m fl.}}
ight)^{d-4} f^2 \qquad {
m Both \ irrelevant \ if}$$

we assume:

$$d_H > 1$$

$$d_H > 1 \qquad d_{H^2} > 4$$

Let's postulate the existence of fermionic operators:

$$\frac{1}{\Lambda_{\text{fl.}}^{d_F-5/2}} (\tilde{y}_L \ q_L \mathcal{F}_L + \tilde{y}_R \ q_R \mathcal{F}_R)$$

This dimension is not related to the Higgs!

$$f(y_L \ q_L Q_L + y_R \ q_R Q_R)$$

$$f(y_L \ q_L Q_L + y_R \ q_R Q_R)$$
 with $y_{L/R} f \sim \left(\frac{4\pi f}{\Lambda_{\mathrm{fl.}}}\right)^{d_F - 5/2} 4\pi f$

Sequestering QCD in Partial compositeness

 $\mathcal{G}_{\mathrm{TC}}$:

rep R

rep R'

G.Ferretti, D.Karateev 1312.5330, 1604.06467

Ψ

 χ

 $T = \psi \psi \chi$ or $\psi \chi \chi$

SM:

EW

colour + hypercharge

global: $\langle \psi \psi \rangle \neq 0$

PNGB Higgs

a) $\langle \chi \chi \rangle \neq 0$

coloured pNGBs di-boson

b)
$$\langle \chi \chi \rangle = 0$$

light top partners from 1 Hooft anomaly conditions?

Planck scale

G.C., S. Vatani, C. Zhang 1911.05454, 2005.12302

Condensation scale

Usual low energy description of composite Higgs models

Standard Model

One of Ferretti models

G.C., S.Vatani, C.Zhang 1911.05454, 2005.12302

Conformal window (large scaling dimensions)

One of Ferretti models + additional fermions

Condensation scale

Usual low energy description of composite Higgs models

Standard Model

One of Ferretti models

Planck scale

Symmetry breaking by scalars

4-fermion Ops

G.C., S. Vatani, C. Zhang

1911.05454, 2005.12302

Conformal window (large scaling dimensions)

One of Ferretti

models +

additional fermions

generated!

Condensation scale

Usual low energy description of composite Higgs models

Standard Model

One of Ferretti models

Standard Model

20

The composite Higgs wilderness

- · Very light ALPs (below the Z)
- · Singlets (Thomas' talk)
- @ Electroweak pNGBs (Thomas' talk)
- o Coloured scalars
- o Common exotic top partner decays
- Exotic-colour top partners
- o Spin-1 resonances

The composite Higgs wilderness

- o Very light ALPs (below the Z
- o Singlets (Thomas' talk)
- @ Electroweak pNGBs (Thomas' talk)
- o Coloured scalars
- o Common exotic top partner decays
- Exotic-colour top partners
- o Spin-1 resonances

EW and Higgs precision!!!

	Real Pseudo-Real		SU(5)/SO(5)) × SU(6),	/Sp(6)		
$Sp(2N_{ m HC})$	$5 \times \mathbf{Ad}$	$6 imes \mathbf{F}$	$2N_{ m HC} \geq 12$	$\frac{5(N_{\mathrm{HC}}+1)}{3}$	1/3	/	
$Sp(2N_{ m HC})$	$5 imes \mathbf{A}_2$	$6 imes \mathbf{F}$	$2N_{ m HC} \geq 4$	$\frac{5(N_{\rm HC}-1)}{3}$	1/3	$2N_{ m HC}=4$	M5
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$6 \times \mathbf{Spin}$	$N_{ m HC}=11,13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	/	
	Real	Complex	SU(5)/SO(5)	\times SU(3) ²	/SU(3)		
$SU(N_{ m HC})$	$5 imes \mathbf{A}_2$	$3 imes (\mathbf{F}, \overline{\mathbf{F}})$	$N_{ m HC}=4$	<u>5</u> 3	1/3	$N_{ m HC}=4$	M6
$SO(N_{ m HC})$	$5 imes \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{ m HC}=10,14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{ m HC}=10$	M7
	Pseudo-Real	Real	$\mathrm{SU}(4)/\mathrm{Sp}(4)$	× SU(6)/	'SO(6)		en lite a les contratos de la contrator de la
$Sp(2N_{ m HC})$	$4 imes {f F}$	$6 imes {f A}_2$	$2N_{ m HC} \leq 36$	$\frac{1}{3(N_{ m HC}-1)}$	2/3	$2N_{ m HC}=4$	M8
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{ m HC}=11,13$	$\frac{8}{3}$, $\frac{16}{3}$	2/3	$N_{ m HC}=11$	M9
	Complex	Real	$\mathrm{SU}(4)^2/\mathrm{SU}(4)^2$) × SU(6)	/SO(6)		
$SO(N_{ m HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes \mathbf{F}$	$N_{ m HC}=10$	80 00	2/3	$N_{ m HC}=10$	M10
$SU(N_{ m HC})$	$4 imes(\mathbf{F},\overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{ m HC}=4$	$\frac{2}{3}$	2/3	$N_{ m HC}=4$	M11
	Complex	Complex	$SU(4)^2/SU(4)$	$\times SU(3)^2$	² /SU(3)		
$SU(N_{ m HC})$	$4 imes(\mathbf{F},\overline{\mathbf{F}})$	$3 imes(\mathbf{A}_2,\overline{\mathbf{A}}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{ m HC}-2)}$	2/3	$N_{ m HC}=5$	M12
$SU(N_{ m HC})$	$4 imes(\mathbf{F},\overline{\mathbf{F}})$	$3 imes (\mathbf{S}_2, \overline{\mathbf{S}}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	/	
$SU(N_{ m HC})$	$4 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 imes (\mathbf{F}, \overline{\mathbf{F}})$	$N_{ m HC}=5$	4	2/3	/	

Sp(4) with (N_F, N_A) Dirac fermions

On the conformal windowsill: many possibilities

The models

QCD	SU(4)/Sp(4)	SU(5)/SO(5)	$SU(4)^2/SU(4)$
SU(6)/Sp(6)		M5 $(\psi \chi \chi)$	
SU(6)/SO(6)	M8-9 $(\psi\psi\chi)$	M3-4 $(\psi\psi\chi)$ M1-2 $(\psi\chi\chi)$	M10-11 $(\psi\psi\chi)$
$\mathrm{SU}(3)^2/\mathrm{SU}(3)$		M6-7 $(\psi \chi \chi)$	M12 $(\psi\psi\chi)$

7 classes of models!

Focusing on QCD-charged states:

	Models	χ (R, Y, B)	π	\mathcal{V}^{μ}	${\cal A}^{\mu}$	Ψ	di-quark
C1	M1-2	$(R, -\frac{1}{3}, \frac{1}{6})$	$8_0, 6_{-2/3}$	$8_0, 1_0, \frac{3_{2/3}}{}$	$8_0, 6_{-2/3}$	8, 1, 3 , 6	none
C2	M3-4, M8-11	$(R, \frac{2}{3}, \frac{1}{3})$	$8_0, 6_{4/3}$	$8_0, 1_0, \frac{3_{-4/3}}{}$	$8_0, 6_{4/3}$	3	$\pi_6, \mathcal{V}_3^\mu, \mathcal{A}_6^\mu$
C3	M5	$(\Pr, -\frac{1}{3}, \frac{1}{6})$	$8_0, \frac{3_{2/3}}{3}$	$8_0, 1_0, \frac{6_{-2/3}}{}$	$8_0, \frac{3_{2/3}}{}$	8, 1, <mark>3</mark> , 6	none
C4	M6-7	$(C, -\frac{1}{3}, \frac{1}{6})$	80	$8_0, 1_0$	80	8, 1, <mark>3</mark> , 6	none
C5	M12	$(C, \frac{2}{3}, \frac{1}{3})$	80	$8_0, 1_0$	80	3	none

Red: B = 1/3 Blue: B = 2/3

Coloured pNGBs

- o They are always present in models.
- o They are relatively light (TeV scale)

C1:
$$\pi_8 \to t\bar{t}, gg; \pi_6 \to bb,$$

C2:
$$\pi_8 \to t\bar{t}, gg; \pi_6 \to tt$$
,

C3:
$$\pi_8 \to t\bar{t}, gg; \ \pi_3 \to \bar{b}\bar{s} \text{ or } t\bar{\nu}, b\tau^+,$$

C4-5:
$$\pi_8 \to t\bar{t}, gg$$
.

2002,01474

Octet
$$\begin{cases} \pi_8 o t \overline{t} & \text{(sqluon-like)} \\ \pi_8 o gg, g\gamma \end{cases}$$

Triplet
$$\pi_3 o b ar{s}$$
 (stop-like)

Sextet
$$\begin{cases} \pi_6 \to tt \\ \pi_6 \to bb \end{cases}$$

Top partner pheno revisited

A.Banerjee et al 2203.0727 (Snowmass LOI)

- o Dedicated searches in SM final states: tZ, bW, tH...
- pNGBs lighter than the top partners are to be expected in all composite models

The S decays are model-dependent, but they can be classified:

$$S_i^{++} \to W^+ W^+$$

$$S_i^+ \to W^+ \gamma, W^+ Z$$

$$S_i^0 \to W^+ W^-, \gamma \gamma, \gamma Z, ZZ.$$

Calculable ratios (from anomalies) and always present for all models.

$$S^{++} \to W^+ t \bar{b},$$

 $S^+ \to t \bar{b},$
 $S^0 \to t \bar{t}, b \bar{b}.$

Dominant, if present for the specific S.

Common exotic top partner decays

$$\mathcal{L}_{\Psi f V} = \frac{e}{\sqrt{2} s_{W}} \kappa_{T,L}^{W} \overline{T} W^{+} P_{L} b + \frac{e}{2 c_{W} s_{W}} \kappa_{T,L}^{Z} \overline{T} Z P_{L} t + \frac{e}{\sqrt{2} s_{W}} \kappa_{B,L}^{W} \overline{B} W^{-} P_{L} t
+ \frac{e}{2 c_{W} s_{W}} \kappa_{B,L}^{Z} \overline{B} Z P_{L} b + \frac{e}{\sqrt{2} s_{W}} \kappa_{X,L}^{W} \overline{X} W^{+} P_{L} t + L \leftrightarrow R + \text{h.c.}$$

$$\mathcal{L}_{\Psi f S} = \sum_{i} S_{i}^{+} \left[\kappa_{T,L}^{S_{i}^{+}} \overline{T} P_{L} b + \kappa_{X,L}^{S_{i}^{+}} \overline{X} P_{L} t + L \leftrightarrow R \right] + \text{h.c.} + \sum_{i} S_{i}^{-} \left[\kappa_{B,L}^{S_{i}^{-}} \overline{B} P_{L} t + L \leftrightarrow R \right] + \text{h.c.}$$

$$+ \sum_{i} S_{i}^{0} \left[\kappa_{T,L}^{S_{i}^{0}} \overline{T} P_{L} t + \kappa_{B,L}^{S_{i}^{0}} \overline{B} P_{L} b + L \leftrightarrow R \right] + \text{h.c.}$$

$$+ \sum_{i} S_{i}^{++} \left[\kappa_{X,L}^{S_{i}^{++}} \overline{X} P_{L} b + L \leftrightarrow R \right] + \text{h.c.}$$

$$(15)$$

 Possible to write a Master-Lagrangian containing all possible couplings, implemented at NLO in MG (FSMOG)

Common exotic top partner decays A.Bane

A.Banerjee et al 2203.0727 (Snowmass LOI)

- Dedicated searches may be useful to push up the limits.
- Projections for FCC-hh are needed...
- in combination with scalar direct production.

Exotic top partners

	Models	χ (R, Y, B)	π	\mathcal{V}^{μ}	${\cal A}^{\mu}$	Ψ	di-quark
C1	M1-2	$(R, -\frac{1}{3}, \frac{1}{6})$	$8_0, 6_{-2/3}$	$8_0, 1_0, \frac{3_{2/3}}{}$	$8_0, 6_{-2/3}$	8, 1, 3 , 6	none
C2	M3-4, M8-11	$(R, \frac{2}{3}, \frac{1}{3})$	$8_0, 6_{4/3}$	$8_0, 1_0, \frac{3_{-4/3}}{}$	$8_0, 6_{4/3}$	3	$\pi_6, \mathcal{V}_3^\mu, \mathcal{A}_6^\mu$
C3	M5	$(\Pr, -\frac{1}{3}, \frac{1}{6})$	$8_0, \frac{3_{2/3}}{3}$	$8_0, 1_0, \frac{6_{-2/3}}{}$	$8_0, \frac{3_{2/3}}{}$	8, 1, <mark>3</mark> , 6	none
C4	M6-7	$(C, -\frac{1}{3}, \frac{1}{6})$	80	$8_0, 1_0$	80	8, 1, <mark>3</mark> , 6	none
C5	M12	$(C, \frac{2}{3}, \frac{1}{3})$	80	$8_0, 1_0$	80	3	none

Models in C1, C3 and C4 contain top-partners as octet and sextet!

with early as

Larger production than the triplets!

Exolic top partners G.C., T.Flacke, M.Kunkel, W.Porod

2112.00019

O A specific model: M5 of Ferretti's classification

Hyper-fermions

	$\operatorname{Sp}(2N_c)$	$SU(3)_c$	$\mathrm{SU}(2)_L$	$U(1)_Y$	SU(5)	SU(6)	U(1)
$\psi_{1,2}$		1	2	1/2			
$\psi_{3,4}$		1	2	-1/2	5	1	$-\frac{3q_{\chi}}{5(N_c-1)}$
ψ_5		1	1	0			
χ_1							
χ_2		3	1	-x			
χ_3					1	6	a
χ_4					1	U	q_{χ}
χ_5		$\bar{3}$	1	x			
χ_6							

Chimera Baryons (top partners)

	$SU(5) \times SU(6)$	$SO(5) \times Sp(6)$	names
$\psi \chi \chi$	(5, 15)	(5, 14)	$oxed{\mathcal{B}^1_{14}}$
		$+({f 5},{f 1})$	$oxedsymbol{\mathcal{B}}_1^1$
	(5, 21)	(5, 21)	\mathcal{B}^1_{21}
$\psi \bar{\chi} \bar{\chi}$	$({f 5}, {f \overline{15}})$	(5, 14)	$\mid \mathcal{B}_{14}^2 \mid$
		+(5,1)	\mathcal{B}_1^2
	$({f 5},{f \overline{21}})$	(5, 21)	\mathcal{B}^2_{21}
$ \bar{\psi}\bar{\chi}\chi$	$(f ar{5}, 35)$	(5, 14)	$\mid \mathcal{B}_{14}^3 \mid$
		+(5, 21)	\mathcal{B}_{21}^3
	$({f ar 5},{f 1})$	(5,1)	\mathcal{B}_1^3

$$egin{align} {f 14}
ightarrow {f 8_0} + {f 3_{-2x}} + {f ar 3_{2x}} \ , \ & {f 21}
ightarrow {f 8_0} + {f 6_{2x}} + {ar 6_{-2x}} + {f 1_0} \ . \ \ \end{array}$$

Exotic top partners G.C., T.Flacke, M.Kunkel, W.Porod

2112.00019

O A specific model: M5 of Ferretti's classification

Hyper-fermions

	$\operatorname{Sp}(2N_c)$	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	SU(5)	SU(6)	U(1)
$\psi_{1,2}$		1	2	1/2			
$\psi_{3,4}$		1	2	-1/2	5	1	$-\frac{3q_{\chi}}{5(N_c-1)}$
ψ_5		1	1	0			
χ_1							
χ_2		3	1	-x			
<i>χ</i> ₃					1	6	a
χ_4							q_{χ}
χ_5		$\bar{3}$	1	x			
χ_6							

Chimera Baryons (top partners)

	$SU(5)\times SU(6)$	$SO(5) \times Sp(6)$	names
$\psi \chi \chi$	(5, 15)	(5,14)	$oxed{\mathcal{B}^1_{14}}$
		+(5,1)	$\mid \mathcal{B}_1^1 \mid$
	(5, 21)	(5, 21)	\mathcal{B}^1_{21}
$\psi \bar{\chi} \bar{\chi}$	$({f 5},{f \overline{15}})$	(5,14)	$\mid \mathcal{B}^2_{14} \mid$
		$+({f 5},{f 1})$	$\mid \mathcal{B}_1^2 \mid$
	$({f 5},{f \overline{21}})$	(5, 21)	\mathcal{B}^2_{21}
$ \bar{\psi}\bar{\chi}\chi$	$(f ar{5}, 35)$	(5,14)	$\mid \mathcal{B}_{14}^3 \mid$
		+(5, 21)	\mathcal{B}^3_{21}
	$({f ar 5},{f 1})$	(5,1)	\mathcal{B}_1^3

$$egin{aligned} 14
ightarrow 8_0 + igg(3_{-2\mathrm{x}} + ar{3}_{2\mathrm{x}} igg) \ & \ 21
ightarrow 8_0 + 6_{2\mathrm{x}} + ar{6}_{-2\mathrm{x}} + 1_0 \end{aligned}$$

Exolic top partners G.C., T.Flacke, M.Kunkel, W.Porod

2112.00019

O A specific model: M5 of Ferretti's classification

Hyper-fermions

	$\operatorname{Sp}(2N_c)$	$SU(3)_c$	$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	SU(5)	SU(6)	U(1)
$\psi_{1,2}$		1	2	1/2			
$\psi_{3,4}$		1	2	-1/2	5	1	$-\frac{3q_{\chi}}{5(N_c-1)}$
ψ_5		1	1	0			
χ_1							
χ_2		3	1	-x			
χ_3					1	6	a
χ_4							q_{χ}
χ_5		$\bar{3}$	1	x			
χ_6							

Chimera Baryons (top partners)

	$SU(5)\times SU(6)$	$SO(5) \times Sp(6)$	names
$\psi \chi \chi$	(5, 15)	(5,14)	\mathcal{B}^1_{14}
		+(5,1)	\mathcal{B}_1^1
	(5, 21)	$({f 5},{f 21})$	\mathcal{B}^1_{21}
$\psi \bar{\chi} \bar{\chi}$	$({f 5}, {f \overline{15}})$	(5,14)	\mathcal{B}^2_{14}
		+(5,1)	\mathcal{B}_1^2
	$({f 5},{f \overline{21}})$	$({f 5},{f 21})$	\mathcal{B}^2_{21}
$\bar{\psi}\bar{\chi}\chi$	$(f ar{5}, 35)$	(5,14)	\mathcal{B}^3_{14}
		+(5, 21)	\mathcal{B}^3_{21}
	$(f ar{5}, f 1)$	(5,1)	\mathcal{B}_1^3

$$egin{align} 14
ightarrow 8_0 + igg(3_{-2\mathrm{x}} + ar{3}_{2\mathrm{x}} igg) \ & \ 21
ightarrow 8_0 + 6_{2\mathrm{x}} + ar{6}_{-2\mathrm{x}} + 1_0 \ & \ \end{array}$$

Exolic lop parlners

G.C., T.Flacke, M.Kunkel, W.Porod 2112.00019

Exolic lop partners

G.C., T.Flacke, M.Kunkel, W.Porod 2112.00019

The baryon content looks ironically SUSY-like!

Exotic top partners

G.Cacciapaglia et al. 2112.00019

Octoni bounds

G.C., T.Flacke, M.Kunkel, W.Porod 2112.00019

- o Model implemented in MG.
- © Check Limits from searches in MadAnalysis and CheckMate.
- Strongest bound from gluino and stop searches!

G.C., A.Cornell, A.Deandrea, M.Kunkel, W.Porod Work in progress

	Models	χ (R, Y, B)	π	\mathcal{V}^{μ}	${\cal A}^{\mu}$	Ψ	di-quark
C1	M1-2	$(R, -\frac{1}{3}, \frac{1}{6})$	$8_0, 6_{-2/3}$	$8_0, 1_0, \frac{3_{2/3}}{}$	$8_0, 6_{-2/3}$	8, 1, 3 , 6	none
C2	M3-4, M8-11	$(R, \frac{2}{3}, \frac{1}{3})$	$8_0, 6_{4/3}$	$8_0, 1_0, \frac{3_{-4/3}}{}$	$8_0, 6_{4/3}$	3	$\pi_6, \mathcal{V}_3^\mu, \mathcal{A}_6^\mu$
C3	M5	$(\Pr, -\frac{1}{3}, \frac{1}{6})$	$8_0, \frac{3_{2/3}}{3}$	$8_0, 1_0, \frac{6_{-2/3}}{}$	$8_0, \frac{3_{2/3}}{}$	8, 1, 3, 6	none
C4	M6-7	$(C, -\frac{1}{3}, \frac{1}{6})$	80	$8_0, 1_0$	80	8, 1, 3, 6	none
C5	M12	$(C, \frac{2}{3}, \frac{1}{3})$	80	$8_0, 1_0$	80	3	none

- o Octets (and one singlet) ubiquitous
- o Triplets and sextets present in C1, C2 and C3.

G.C., A.Cornell, A.Deandrea, M.Kunkel, W.Porod Work in progress

Professionally implemented via hidden symmetry:

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu} - \frac{1}{2} \operatorname{Tr} \mathbf{B}_{\mu\nu} \mathbf{B}^{\mu\nu} - \frac{1}{2} \operatorname{Tr} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}$$

$$+ \frac{f_0^2}{2} \operatorname{Tr} d_{0,\mu} d_0^{\mu} + \frac{f_1^2}{2} \operatorname{Tr} d_{1,\mu} d_1^{\mu}$$

$$+ \frac{f_K^2}{2} \operatorname{Tr} D^{\mu} K (D_{\mu} K)^{\dagger} + r f_1^2 \operatorname{Tr} d_{0,\mu} K d_1^{\mu} K^{\dagger}$$

$$+ \mathcal{L}_{\text{fermions}}$$

$$G_0/H_0$$

$$G_1/H_1$$

$$H_0 \times H_1/H$$

G.C., A.Cornell, A.Deandrea, M.Kunkel, W.Porod Work in progress

Professionally implemented via hidden symmetry:

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu} - \frac{1}{2} \operatorname{Tr} \mathbf{B}_{\mu\nu} \mathbf{B}^{\mu\nu} - \frac{1}{2} \operatorname{Tr} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}$$

$$+ \frac{f_0^2}{2} \operatorname{Tr} d_{0,\mu} d_0^{\mu} + \frac{f_1^2}{2} \operatorname{Tr} d_{1,\mu} d_1^{\mu}$$

$$+ \frac{f_K^2}{2} \operatorname{Tr} D^{\mu} K (D_{\mu} K)^{\dagger} + r f_1^2 \operatorname{Tr} d_{0,\mu} K d_1^{\mu} K^{\dagger}$$

$$+ \mathcal{L}_{\text{fermions}}$$

 G_0/H_0

 G_1/H_1

 $H_0 \times H_1/H$

SM gauging $SU(3)_c \times U(1)_Y$

G.C., A.Cornell, A.Deandrea, M.Kunkel, W.Porod Work in progress

Professionally implemented via hidden symmetry:

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu} - \frac{1}{2} \operatorname{Tr} \mathbf{B}_{\mu\nu} \mathbf{B}^{\mu\nu} - \frac{1}{2} \operatorname{Tr} \boldsymbol{\mathcal{F}}_{\mu\nu} \boldsymbol{\mathcal{F}}^{\mu\nu}$$

$$+ \frac{f_0^2}{2} \operatorname{Tr} d_{0,\mu} d_0^{\mu} + \frac{f_1^2}{2} \operatorname{Tr} d_{1,\mu} d_1^{\mu}$$

$$+ \frac{f_K^2}{2} \operatorname{Tr} D^{\mu} K (D_{\mu} K)^{\dagger} + r f_1^2 \operatorname{Tr} d_{0,\mu} K d_1^{\mu} K^{\dagger}$$

$$+ \mathcal{L}_{\text{fermions}}$$

 G_0/H_0

SM gauging $SU(3)_c \times U(1)_Y$

 G_1/H_1

Full gauging Resonances Masses for V $H_0 \times H_1/H$

Connects the two sectors $Masses\ for\ A$

G.C., A.Cornell, A.Deandrea, M.Kunkel, W.Porod Work in progress

Professionally implemented via hidden symmetry:

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \mathbf{G}_{\mu\nu} \mathbf{G}^{\mu\nu} - \frac{1}{2} \operatorname{Tr} \mathbf{B}_{\mu\nu} \mathbf{B}^{\mu\nu} - \frac{1}{2} \operatorname{Tr} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu}$$

$$+ \frac{f_0^2}{2} \operatorname{Tr} d_{0,\mu} d_0^{\mu} + \frac{f_1^2}{2} \operatorname{Tr} d_{1,\mu} d_1^{\mu}$$

$$+ \frac{f_K^2}{2} \operatorname{Tr} D^{\mu} K (D_{\mu} K)^{\dagger} + r f_1^2 \operatorname{Tr} d_{0,\mu} K d_1^{\mu} K^{\dagger}$$

$$+ \mathcal{L}_{\text{fermions}}$$

5 indep. parameters:

$$\tilde{g}, \quad g_{
ho\pi\pi}, \quad M_{\mathcal{V}_8}, \quad \xi, \quad f_\chi \, .$$

$$g_{\rho\pi\pi} = C_{\mathcal{V}_8}|_{\beta_8 \to 0} = C_{\mathcal{V}_{3/6}} = \frac{\tilde{g}(r^2 - 1)f_K^2}{f_0^2 (1 - R^2)}$$

$$\xi = rac{M_{\mathcal{A}}}{M_{\mathcal{V}_8}}$$

$$f_{\chi} = \sqrt{f_0^2 - r^2 f_1^2}$$
 .

Spin-1 resonances: decays

G.C., A.Cornell, A.Deandrea, M.Kunkel, W.Porod Work in progress

o Couplings to pNGBs

$$egin{aligned} \mathcal{O}_V &= i \operatorname{Tr}([m{\pi}, \partial_{\mu} m{\pi}] m{V}^{\mu}), \ \mathcal{O}_{\mathcal{A}} &= \operatorname{Tr}([m{\pi}, [m{\pi}, \partial_{\mu} m{\pi}]] m{\mathcal{A}}^{\mu}), \end{aligned}$$

$$V o \pi\pi$$
 $A o \pi\pi\pi$

Determined by $g_{\rho\pi\pi}$

o Octet couplings to quarks via mixing

Determined by \tilde{g}

O Couplings to tops via Partial Compositeness

$$t, b$$
 t, b

Determined by $g_{\rho BB}$

Spin-1 resonances: decays

G.C., A.Cornell, A.Deandrea, M.Kunkel, W.Porod Work in progress

Couplings to pNGBs

$$\mathcal{O}_{V}=i\operatorname{Tr}([\pi,\partial_{\mu}\pi]V^{\mu}), \qquad V
ightarrow \pi\pi$$
 $\mathcal{O}_{A}=\operatorname{Tr}([\pi,\partial_{\mu}\pi]V^{\mu}), \qquad V
ightarrow \pi\pi$
 $C1-2: \qquad \mathcal{V}_{8}
ightarrow qar{q}, \quad bar{b}, \quad tar{t}, \quad \pi_{8}\pi_{8}, \quad \pi_{6}\pi_{6}^{c}, \quad \pi_{8}\pi_{8}, \quad \pi_{3}\pi_{3}^{c}, \quad C3: \qquad \mathcal{V}_{8}
ightarrow qar{q}, \quad bar{b}, \quad tar{t}, \quad \pi_{8}\pi_{8}, \quad \pi_{3}\pi_{3}^{c}, \quad C4-5: \qquad \mathcal{V}_{8}
ightarrow qar{q}, \quad bar{b}, \quad tar{t}, \quad \pi_{8}\pi_{8}, \quad \pi_{3}\pi_{3}^{c}, \quad T_{8}\pi_{8}, \quad T_$

Couplings to tops via Partial Compositeness

Determined by $g_{\rho BB}$

Figure 2: Sample branching ratios for $g_{\rho\pi\pi} = 1$ and $M_{\nu_8} = 4.5$ TeV.

Spin-1 resonances: LHC bounds

G.C., A.Cornell, A.Deandrea, M.Kunkel, W.Porod Work in progress

Spin-1 resonances: LHC bounds

G.C., A.Cornell, A.Deandrea, M.Kunkel, W.Porod Work in progress

Spin-1 resonances: FCC-hh

G.C., A.Cornell, A.Deandrea, M.Kunkel, W.Porod Work in progress

- o Pair production becomes relevant
- o Dominant channel is the sextet (when present)
- Note: the octet should be discovered in single production channel!

$$\mathcal{V}_6 \to \pi_8 \pi_3^{\dagger} \to (t\bar{t})(\bar{b}\bar{s} \text{ or } ql) \text{ in C3}$$

$$\mathcal{A}_6 \to \pi_8 \pi_8 \pi_6 \ (t\bar{t}t\bar{t}bb) \text{ and } \pi_6^{\dagger} \pi_6 \pi_6 \ (\bar{b}\bar{b}bbb) \text{ in C1}$$

$$\mathcal{A}_6 \to tt \text{ or } \pi_8 \pi_8 \pi_6 \ (t\bar{t}t\bar{t}tt) \text{ and } \pi_6^{\dagger} \pi_6 \pi_6 \ (\bar{t}t\bar{t}ttt) \text{ in C2}$$

The composite Higgs wilderness

- Light un-coloured pNGBs (Thomas' talk)
- o Coloured scalars (2 or 4 tops)
- o Spin-1 resonances
- e Exotic top partners
- o Lattice can help!

Spectra!

 $g_{
ho\pi\pi}$

 $g_{
ho BB}$

BONUS TRACKS

Typical ALP Lagrangian:

$$\mathcal{L}_{\text{eff}}^{D \le 5} = \frac{1}{2} \left(\partial_{\mu} a \right) (\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F}$$

$$+ g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu} ,$$

Composite Higgs scenario:

$$rac{C_{WW}}{\Lambda} \sim rac{C_{BB}}{\Lambda} \sim rac{N_{
m TC}}{64\sqrt{2} \; \pi^2 f}$$

$$(C_{\gamma\gamma} = C_{WW} + C_{BB})$$

$$\frac{C_{GG}}{\Lambda} = 0$$

(Poor bounds at the LHC)

CF is loop-induced:

M.Bauer et al, 1708.00443

Typical ALP Lagrangian:

$$\mathcal{L}_{\text{eff}}^{D \le 5} = \frac{1}{2} \left(\partial_{\mu} a \right) \left(\partial^{\mu} a \right) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{\Lambda} \sum_{F} \bar{\psi}_{F} C_{F} \gamma_{\mu} \psi_{F}$$

$$+ g_{s}^{2} C_{GG} \frac{a}{\Lambda} G_{\mu\nu}^{A} \tilde{G}^{\mu\nu,A} + g^{2} C_{WW} \frac{a}{\Lambda} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A} + g'^{2} C_{BB} \frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu} ,$$

Composite Higgs scenario:

$$rac{C_{WW}}{\Lambda} \sim rac{C_{BB}}{\Lambda} \sim rac{N_{
m TC}}{64\sqrt{2} \ \pi^2 f}$$

$$(C_{\gamma\gamma} = C_{WW} + C_{BB})$$

We will consider two scenarios:

Photo-philic and

Photo-phobic

Free parameters:

Tera-Z portal to compositeness

(via ALPs)

G.C., A. Deandrea, A. Iyer, Sridhar 2104.11064

This process is always associated with a monochromatic photon.

Tera Z phase of FCC-ee will lead to 5-6 10^12 Z bosons at the end of the run.

Ideal test for rare Z decays!!

Tera-Z portal to compositeness (via ALPs) G.C., A.Deandrea, A.I.

G.C., A.Deandrea, A.Iyer, Sridhar 2104.11064

Photo-phobic

Photo-philic

No leading order coupling to Photons (WZW interaction is Zero!!)

> eg. SU(4)/SP(4), SU(4)xSU(4)/SU(4)

WZW interaction to photons (like the pion)

eg. SU(5)/SO(5), SU(6)/SO(6)

Phenomenology-Prompt Decays

Photo-philic

G.C. et al. 2104.11064

Three isolated photons

$$BR(Z \to 3\gamma)_{\rm LEP} < 2.2 \cdot 10^{-6}$$

Discriminating variable: invariant mass

Photon ordering changes at inv. mass 50 GeV

Bins above 80 GeV populated by fakes: hard to estimate!

Typical EWPT bound

G.C., A.Deandrea, A.Iyer, Sridhar 2104.11064

What if FCC-ee discovers Z > ya?

G.C., A.Deandrea, A.Iyer, A.Pinto 2211.00961

Is it possible to distinguish the composite scenario, from an elementary mock-up model?

$$\Phi = H + i a$$

Singlet scalar

 Ψ = doublet + singlet

Triangle loops can mimic the WZW interactions of the composite ALP:

doublet + singlet = photo-phobic case

 Note: fermion masses of the order of TeV, potentially discoverable at HL-LHC or FCC-hh (QCD-neutral)

What if FCC-ee discovers Z > ya?

G.C., A.Deandrea, A.Iyer, A.Pinto 2211.00961

Is it possible to distinguish the composite scenario, from an elementary mock-up model?

EWPT only depend on H loops

composite case: see 1502.04718

For fixed BR = 10^-8, i.e. discovery.

Arrows: naive contribution of top partner loops.

EW pNGB direct production

G.C., W.Porod, T.Flacke, L.Schwarze 2210.01826

- Dominantly pair-produced (no VEVs except for the doublet)
- o Couplings to two EW gauge bosons via WZW
- Couplings to two fermions via partial compositeness
- Few dedicated direct searches (WWWW and WWWZ
 via doubly-charged scalar)

EW pNGB direct production

W.Porod et al. 2210,01826

- Decays to two GBs from
 WZW anomaly
- small couplings
- Cascade decays can be competitive
- Photon-rich final states!

- Typically sizeable couplings to top and bottom
- Always dominate if present!
- They may be absent model dependence!

Fermio-phobic SU(5)/SO(5) model

W.Porod et al. 2210.01826

- Decays to two GBs from WZW anomaly
- Small couplings
- Cascade decays can be competitive
- Photon-rich final states!

Cascade decays competitive for mass splits around 50 GeV

SU(5)/SO(5) benchmark

W.Porod et al. 2210.01826

- Run all searches in MadAnalysis, Checkmate and Contur on all di-scalar pair production channels.
- Best Limits from multi-photon searches (ATLAS generic analysis)
- Many channels contribute to the same signal region!

SU(5)/SO(5) benchmark

W.Porod et al. 2210,01826

Exclusion from multi-photon search

Change in dominant SR

