Lattice investigations of the chimera baryon spectrum in the Sp(4) gauge theory 2024 Feb. 22@ PNU workshop on composite Higgs

Ho (Paul) Hsiao 蕭禾 National Yang-Ming Chiao-Tung University (NYCU), Taiwan

Outline

- Introduction:
 - Sp(4) gauge theory: A Composite Higgs model
 - Lattice method
 - Chimera baryon
- Results
 - Projections
 - Mass hierarchy of chimera baryons
 - Chiral EFT and AIC
- Summary and Outlook

Our choice of model

- Sp(4) gauge theory with 2F+3AS Dirac fermions
- Breaking pattern:

 $G/H = SU(4) \times SU(6) / Sp(4) \times SO(6)$ Enhanced global symmetry due to the (pseudo-) reality

- ► 4: SM Higgs doublet
- 1: made heavy in model building

4F+6AS 2-component Weyl fermions

SU(3) embedded in antisymmetric representation:

 $SU(6) \rightarrow SO(6) \supset SU(3)$ OCD colour SU(3)

Chimera Baryon

- Interpolating operators
- Λ type: $\mathcal{O}_{CB,\gamma^5} = (\bar{\psi}^{1\,a}\gamma^5\psi^{2\,b}) \Omega_{bc}\chi^{k\,ca}$

(*J*, *R*) = (1/2,5) *top partner

- Σ type: $\mathcal{O}_{CB,\gamma^{\mu}} = (\bar{\psi}^{1\,a}\gamma^{\mu}\psi^{2\,b}) \Omega_{bc}\chi^{k\,ca}$

Spin projection

a, *b*, *c*: hypercolour
Ω: 4 × 4 symplectic matrix *J*: spin *R*: irreducible rep. of the fundamental sector

Results **Quenched** approximation

- Projections
- Mass hierarchy of chimera baryons
- Chiral EFT and AIC

 $\hat{m}_{\rm PS}$: fundamental \hat{m}_{ps} : Antisymmetric

 $\hat{a} \equiv a/\omega_0$ and $\hat{m} \equiv \omega_0 m$

Ensemble	β	$N_t \times N_s^3$	$\langle P \rangle$	ω_0/a
QB1	7.62	48×24^3	0.60192	1.448(3)
QB2	7.7	60×48^3	0.608795	1.6070(19)
QB3	7.85	60×48^3	0.620381	1.944(3)
QB4	8.0	60×48^3	0.630740	2.3149(12)
QB5	8.2	60×48^3	0.643228	2.8812(21)

Projection-CB two-point function

Interpolating operator

$$\mathcal{O}_{\rm CB}^{\gamma}(x) \equiv \left(Q^{ia}{}_{\alpha}(x)\Gamma^{1\,\alpha\beta}Q^{jb}{}_{\beta}(x)\right)\Omega_{ad}\Omega_{bc}\Gamma^{2\,\delta\gamma}\Psi^{k\,cd}{}_{\gamma}(x)$$

▶ two-point function

$$C^{\gamma\gamma'}(t) \equiv \sum_{\vec{x}} \langle \mathcal{O}_{CB}^{\gamma}(x) \overline{\mathcal{O}_{CB}^{\gamma'}}(0) \rangle$$

= $-\sum_{\vec{x}} \left(\Gamma^2 S_{\Psi}^{k\,cd}{}_{c'd'}(x,0) \overline{\Gamma^2} \right)_{\gamma\gamma'} \Omega_{cl}$
 $\times \operatorname{Tr} \left[\Gamma^1 S_Q^b {}_{b'}(x,0) \overline{\Gamma^1} S_Q^a {}_{a'}(x,0) \right]$

At large Euclidean time $\rightarrow P_{e} \left[c_{e} e^{-m_{e}t} + c_{o} e^{-m_{o}(T-t)} \right] - P_{o} \left[c_{o} e^{-m_{o}t} + c_{e} e^{-m_{e}(T-t)} \right]$ $_{cb}\Omega^{b'c'}\Omega_{ad}\Omega^{d'a'}$ $P_e \equiv \frac{1}{2}(1+\gamma^0) \text{ and } P_o \equiv \frac{1}{2}(1-\gamma^0)$

Projection-Parity

The log plot of the chimera baryon correlators (left) and their effective mass plot (right) with the parity projection.

$$C_{\text{CB}}(t) \to P_e \left[c_e e^{-m_e t} + c_o e^{-m_o (T-t)} \right] - P_o \left[c_o e^{-m_o t} + c_e e^{-m_e (T-t)} \right]$$

Chimera Baryon

• Spin projector for Σ -type baryon:

$$(P^{3/2})^{ij} = \delta^{ij} - \frac{1}{3}\gamma^i\gamma^j$$
$$(P^{1/2})^{ij} = \frac{1}{3}\gamma^i\gamma^j$$

• Two-point function

$$C_{ij}(t) = \sum_{\vec{x}} \left\langle \mathcal{O}_{CB}^{i}(x) \bar{\mathcal{O}}_{CB}^{j}(0) \right\rangle \text{ with } \mathcal{O}$$
$$\rightarrow C_{\Sigma}^{1/2}(t) = \operatorname{Tr} \left[\left(P^{1/2} \right)^{ij} C_{jk}(t) \right]$$

 $\widehat{\mathcal{O}}_{CB}^{i} = \left(\bar{\psi}\gamma^{i}\psi\right)\chi$

Results Projection-Spin

Comparison of effective mass plot between two spin projected states and the state without spin projection.

9

Results Mass hierarchy

fermion mass. The lattice size is 60×48^3 with $\beta = 8.0$.

heavy F fermion mass

light F fermion mass

Effective mass plot of chimera baryons calculated with different F fermion masses, at fixed AS

Results Mass hierarchy

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+F_3\hat{m}_{PS}^3+A_3\hat{m}_{ps}^3+L_{2F}\hat{a}\hat{m}_{PS}^2+L_{2A}\hat{a}\hat{m}_{ps}^2$ $+F_4\hat{m}_{PS}^4+A_4\hat{m}_{ps}^4+C_4\hat{m}_{PS}^2\hat{m}_{ps}^2$

Returning large $\chi^2/N_{\rm d.o.f.}$

Optimal search

- Try including different order of corrections
- Calculate AICs for each data set, and scan through all the possible cuts:
 - \implies Fix the cut value for \hat{m}_{PS} and vary \hat{m}_{ps}
 - \blacksquare Increase the fixed value of \hat{m}_{PS}
- Goodness of a fit: Akaike information criterion (AIC)

William I. Jay and Ethan T. Neil [2008.01069]

AIC(M,
$$N_{\text{cut}}$$
) $\equiv \chi^2 + 2k + 2N_{\text{cut}}$

Probability weight

$$W(\mathbf{M}, N_{\text{cut}}) = \frac{1}{\mathcal{N}} \exp \left[-\frac{1}{2} \operatorname{AIC}(\mathbf{M}, N_{\text{cut}})\right]$$

Z

William I. Jay and Ethan T. Neil [2008.01069]

Optimal search

- Try including different order of corrections
- Calculate AICs for each data set, and scan through all the possible cuts:
 - \implies Fix the cut value for \hat{m}_{PS} and vary \hat{m}_{ps}
 - \blacksquare Increase the fixed value of \hat{m}_{PS}
- Goodness of a fit: Akaike information criterion (AIC)

William I. Jay and Ethan T. Neil [2008.01069]

AIC(M,
$$N_{\text{cut}}$$
) $\equiv \chi^2 + 2k + 2N_{\text{cut}}$

Probability weight

$$W(\mathbf{M}, N_{\text{cut}}) = \frac{1}{\mathcal{N}} \exp \left[-\frac{1}{2} \operatorname{AIC}(\mathbf{M}, N_{\text{cut}})\right]$$

Z

Fitting

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+F_3\hat{m}_{PS}^3+A_3\hat{m}_{ps}^3+L_{2F}\hat{a}\hat{m}_{PS}^2+L_{2A}\hat{a}\hat{m}_{ps}^2$ $+F_4\hat{m}_{PS}^4+A_4\hat{m}_{ps}^4+C_4\hat{m}_{PS}^2\hat{m}_{ps}^2$ MF4 MA4 MC4

Still returning large $\chi^2/N_{\rm d.o.f.}$

Apply tree level baryon chiral perturbation theory

M2 $m_{CB} = m_{CB}^{\chi} + F_2 \hat{m}_{PS}^2 + A_2 \hat{m}_{ps}^2 + L_1 \hat{a}$ M3 $+ F_3 \hat{m}_{PS}^3 + A_3 \hat{m}_{ps}^3 + L_{2F} \hat{a} \hat{m}_{PS}^2 + L_{2A} \hat{a} \hat{m}_{ps}^2 \overset{\text{TO}}{\underset{\text{(S)}}{\overset{\text{TO}}{\underset{(S)}}{\overset{(S)}{\overset{(S)}}{\overset{(S)}{\overset{(S)}}{\overset{(S)}{\overset{(S)}{\underset{(S)}}{\overset{(S)}{\overset{(S)}}{\overset{(S)}{\underset{(S)}}{\overset{(S)}{\underset{(S)}}{\overset{(S)}{\overset{(S)}}{\overset{(S)}{\underset{(S)}}{\overset{(S)}{\overset{(S)}}{\overset{(S)}}{\overset{(S)}{\overset{(S)}}{\overset{(S)}}{\overset{(S)}{\overset{(S)}}{\overset{(S)}}{\overset{(S)}}{\overset{(S)}}{\overset{(S)}{\overset{(S)}}{$

probability weight

$$W(\mathbf{M}, N_{\text{cut}}) = \frac{1}{\mathcal{N}} \exp\left[-\frac{1}{2}\operatorname{AIC}(\mathbf{M}, N_{\text{cut}})\right]$$

 $\hat{m}_{\mathrm{PS,cut}}$

Results Fittings of Σ_{CB}

Apply tree level baryon chiral perturbation theory

M2 $m_{CB} = m_{CB}^{\chi} + F_2 \hat{m}_{PS}^2 + A_2 \hat{m}_{ps}^2 + L_1 \hat{a}$ M3 $+ F_3 \hat{m}_{PS}^3 + A_3 \hat{m}_{ps}^3 + L_{2F} \hat{a} \hat{m}_{PS}^2 + L_{2A} \hat{a} \hat{m}_{ps}^2 \overset{\text{TO}}{\underset{\langle \xi \rangle}{\overset{\langle \xi \rangle}}}}}}}}}}}}}}}}}}}}}}}$

 $\hat{m}_{\mathrm{PS,cut}}$

Apply tree level baryon chiral perturbation theory

M2 $m_{CB} = m_{CB}^{\chi} + F_2 \hat{m}_{PS}^2 + A_2 \hat{m}_{ps}^2 + L_1 \hat{a}$ M3 $+ F_3 \hat{m}_{PS}^3 + A_3 \hat{m}_{ps}^3 + L_{2F} \hat{a} \hat{m}_{PS}^2 + L_{2A} \hat{a} \hat{m}_{ps}^2 \overset{\text{TO}}{\underset{\langle \xi \rangle}{\overset{\langle \xi \rangle}}}}}}}}}}}}}}}}}}}}}}}$

 $\hat{m}_{\mathrm{PS,cut}}$

Results **Cross check**

Apply tree-level baryon chiral perturbation theory

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+F_3\hat{m}_{PS}^3+A_3\hat{m}_{ps}^3+L_{2F}\hat{a}\hat{m}_{PS}^2+L_{2A}\hat{a}\hat{m}_{ps}^2$ $+F_4\hat{m}_{PS}^4+A_4\hat{m}_{Ps}^4+C_4\hat{m}_{PS}^2\hat{m}_{Ps}^2$

Results **Cross check**

At a fixed \hat{m}_{PS}^{as} , the fitting function becomes

 $m_{\rm CB} = m_{CB}^{\chi} + F_2 \hat{m}_{\rm PS}^2 + A_2 \hat{m}_{\rm ps}^2 + L_1 \hat{a}$ $+F_3\hat{m}_{PS}^3 + A_3\hat{m}_{ps}^3 + L_{2F}\hat{a}\hat{m}_{PS}^2 + L_{2A}\hat{a}\hat{m}_{ps}^2$ $+F_4\hat{m}_{PS}^4 + A_4\hat{m}_{ps}^4 + C_4\hat{m}_{PS}^2\hat{m}_{ps}^2$

Cross check

At a fixed \hat{m}_{PS}^{as} , the fitting function becomes

$$m_{\rm CB} = m_{CB}^{\chi} + A_2 \hat{m}_{\rm PS}^{as\,2} + L_1 \hat{a} + A_3 \hat{m}_{\rm PS}^{as\,3} + L_{2A} \hat{a}$$
$$+ F_2 \hat{m}_{\rm PS}^{f^{-2}} + C_4 \hat{m}_{\rm PS}^{f^{-2}} \hat{m}_{\rm PS}^{as\,2} + L_{2F} \hat{a} \hat{m}$$
$$+ F_3 \hat{m}_{\rm PS}^{f^{-3}} + F_4 \hat{m}_{\rm PS}^{f^{-4}}$$

 $\Rightarrow \tilde{m}_{CB}^{\chi}(\hat{m}_{\rm ps}, A, L, \hat{a}) + \tilde{F}_2(\hat{m}_{\rm ps}, C, L, \hat{a})\hat{m}_{\rm PS}^2 + \tilde{F}_3\hat{m}_{\rm PS}^3 + F_4\hat{m}_{\rm PS}^{f^{4}}$

 $\hat{a}\hat{m}_{PS}^{as\,2} + A_4\hat{m}_{PS}^{as\,4}$ $h_{\rm PS}^{f^{-2}}$

Cross check

At a fixed \hat{m}_{ps}

1

$$m_{\text{CB}} = \tilde{m}_{CB}^{\chi}(\hat{m}_{\text{ps}}, A, L, \hat{a})$$

+ $\tilde{F}_{2}(\hat{m}_{\text{ps}}, C, L, \hat{a})\hat{m}_{\text{PS}}^{2} + \tilde{F}_{3}\hat{m}_{\text{FS}}^{3}$

Cross check

At a fixed \hat{m}_{PS}

 $m_{\text{CB}} = \tilde{m}_{CB}^{\chi}(\hat{m}_{\text{PS}}, F, L, \hat{a})$ $+\tilde{A}_2(\hat{m}_{\text{PS}}, C, L, \hat{a})\hat{m}_{\text{PS}}^2 + \tilde{A}_3\hat{m}_{\text{PS}}^3$

CB	Ansatz	$\hat{m}^{\chi}_{ ext{CB}}$	F_2	A_2	L_1	F_3	A_3	L_{2F}	L_{2A}	C_4
$\Lambda_{ m CB}$	MC4	1.004(30)	0.692(67)	0.384(12)	-0.14(46)	-0.14(33)	-0.092(46)	0.091(76)	0.003(13)	-0.024(60)
$\Sigma_{ m CB}$	MC4	0.842(21)	0.806(81)	0.558(13)	-0.14(33)	-0.24(68)	-0.162(77)	0.193(62)	-0.01(16)	-0.079(62)
$\Sigma^*_{ m CB}$	M3	1.258(35)	0.36(10)	0.391(31)	-0.33(53)	-0.06(85)	-0.12(16)	0.335(86)	0.006(30)	-

Massless-continuum limit

Comparison with masses of mesons in quenche approximation for fermions in the fundamenta (blue bands) and antisymmetric (red bands representation of Sp(4), and glueballs (yellow at massless-continuum limit.

<\$ 2.0 ·

 $2.5 \cdot$

4.0

 $1.0 \cdot$

0.5

Summary and Outlook

Chimera baryons

- Λ and Σ : <u>Top partner</u> candidates in our model
- Σ^* with spin-3/2
- Projection (Spin and Parity)
- The mass hierarchy of chimera baryons
- Chiral effective field theory

