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Non-Compact Simple Lie Groups

o Faithful unitary Irreducible representations of a non-compact Lie
group are always infinite dimensional

@ They have been of limited utility in particle physics so far

@ A free particle can be thought of as an unitary irrep of the Poincare
group

@ A massless particle is a unitary irrep of the conformal group
50(4,2) ~ SU(2,2)

@ Before QCD, non-compact groups were considered as internal
symmetries to explain the apparently infinite number of hadrons

@ Such symmetries arise naturally is supergravity and (super)-string
theory

@ Of some use in Quantum Mechanics to understand the spectrum of
the harmonic oscillator- SU(1, 1)-or the scattering states of the
hydrogen atom -SO(3,1)).
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Gauge Groups Have Positive Inner Product

@ The Yang-Mills action is

1 14
Lym = _ZgabF:uFbM

where a,b = 1,---d label a basis in the Lie algebra K of the gauge
group K

[ea; eb] = fapec

@ The symmetric matrix g,, must be an invariant inner product on K:
d d
fabgdc =+ gadfbc =0

for the action to be gauge invariant

@ To have a positive inner product in the quantum Hilbert space we
need gap to be a positive matrix (“BRS No Ghosts Theorem™ )
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Gauge Lie Algebras Are of Compact Type

@ A Lie algebra K with a positive invariant inner product can
exponentiate to a compact Lie group K

@ So we will say that such Lie algebras of “compact type”

@ They are direct sums of compact simple Lie algebras and some
abelian Lie algebra

e E.g., The standard model: K = U(1) @ SU(2) & SU(3) exponentiates
to S(U(2) x U(3)) .

@ The coupling constants of a gauge theory parametrize solutions for
Zab; €.g., for the standard model there is a three parameter family of
invariant inner products

@ Recall that there are many Lie groups for the same Lie algebra.

@ Subtle point: Some of these groups may not be compact even if the
Lie algebra is of compact type

e Think of U(1) vs its universal cover R
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Gauge Theories With Fermionic Matter

@ The fermions are in a (possibly reducible) unitary representation of K

@ The usual perturbative renormalization procedure works only if the
fermionic representation is finite dimensional: otherwise some of the
Casimirs (that appear in the beta function for example) can diverge

@ Asymptotic freedom imposes strict constraints on the size of the
fermion representation

@ A tiny window of theories are of special interest as they are both
asymptotically free and have an IR stable fixed point (e.g.,
Banks-Zaks for QCD)
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QCD-like Composite Models

@ There is a natural way to get bosons of small mass (compared to the
compositeness scale) as bound states: spontaneously break some
internal symmetry

@ There is no simple way to get fermions of small mass; spontaneous
breaking of supersymmetry has been tried but found wanting

@ One idea is that fundamental theory is a gauge theory with massless
fermions (much like QCD)

@ It is asymptotically free and has a non-trivial IR stable fixed point

@ Near this fixed point there can be mass less bound states: some
scalars and some fermions

@ Perhaps these can be Higgs and quarks/leptons

@ With a finite number of fundamental fermions the possibilities are
tightly constrained
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Infinite Multiplets of Fermions

@ A natural origin for an infinite multiplet of fermions is an approximate
symmetry under a non-compact Lie Group G

@ The gauge group K C G is a compact subgroup; for example, the
maximal compact subgroup

@ The reduction of a unitary representation of G will give an infinite
sum over irreducible representations of K

@ We would need a regularization and renormalization in the sum over
these representations in addition to the usual regularization and
renormalization of momenta in Feynman diagrams

@ Need to give a meaning to the Casimirs; zeta function regularization
is natural
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Discrete Series Representations

@ Especially nice mathematical theory in the case of "Discrete Series”:
each element of the representation matrices are square integrable
functions on the group

@ A beautiful branch of mathematics with deep connections to number
theory (Langlands Program)

(Harish-Chandra) G has Discrete Series representations iff its rank is the
same as that of its maximal compact subalgebra K

S. G. Rajeev (University of Rochester ) BusanCompositeness(slide 8)



An Example: U(1) C SU(1,1)

@ The Lie algebra SU(1,1) ~ SL(2, R) has commutation relations

[e—.er] = eo,[e0, ex] = £2ey
@ ¢y spans the maximal compact subalgebra U(1)

@ The simple harmonic oscillator provides an example of a unitary
representation

o With [a, al] = 1 we have

2 at ~ (o4 2)
272 | 2

1 af? af?
i I S Rt
aa—|—2,21 5
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An Example: U(1) C SU(1,1) (contd.)

@ The states with even eigenvalues for afa form one unitary irreducible
representation: | 0),|2),--- ; those with odd eigenvalues | 1), 3),---
form another

@ Subtle point: these exponentiate to representations of the double
cover (“Metaplectic Group”) of the group SU(1,1): because afa+ 3
has half-integer eigenvalues

e We can gauge the U(1) subalgebra, with massless Dirac fermions in
the “even"” (resp. “odd" ) multiplet above

@ The particles have charges e, = %, 2%,4% ---for the “even” multiplet;
for the “odd"” multiplet e, = 1%,3%,5%, e

@ More generally, discrete series representations have charges in an
arithmetic sequence

en=4+2n, n=0,1,---

@ The lowest weight j can be any positive real number if we allow the
Lie group to be the universal cover SU(1,1). (For rational j it will be
a finite index cover.)
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Abelian Gauge Theory

The perturbative beta function of QED with a single fermion of unit
charge is, up to fourth order in charge vertices|[DeRafael and
Rosner,ltzykson and Zuber|

Bla) =22+ (;‘:)2 +0(a?)

If we have a multiplet of charges e, instead we would have
2« 2 1 o 2 4 3
Bla) = g;;en'i‘i <7r> zﬂ:enﬂLO(Of )

To this order there are no fermion loops; also the beta function is
“scheme” independent (i.e., unchanged under changes of coupling
constant o — f())

For a finite multiplet this gives the familiar result that QED beta
function is positive: the two coefficients are separately positive.
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Abelian Gauge Theory (contd.)

@ In the next order (six vertices) the diagrams with one fermion loop
would give 3", €8

o Those with two fermion loops will have a factor of 3_, et 3" €2

@ The beta function is known to very high order (five?); but the
qualitative UV/IR behavior don't change, | believe.

@ Still, it would be good to make a more detailed study beyond what |
describe below including higher orders
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Abelian Gauge Theory with an Infinite Multiplet of

Fermions

e For infinite multiplets (such as those arising from a discrete series
representation of SU(1,1) ) the sums z(k) = 3, e can diverge.

@ For the discrete series representations of U(1) C SU(1,1) :

(k,j) = Z(J+2n

@ A further regularization/renormalization is needed to make sense of
these “Casimir sums”
@ A method which works in many contexts is to consider the sum
o (+2n)"°. For Re s > 1 this converges and can be related to
the Hurwitz Zeta function (y(s,a) = > 72 o(n+ a)~:

3o =25 ()
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The Hurwitz Zeta Function

e T. M. Apostol Introduction to Analytic Number Theory Springer
(1972)

@ The Riemann zeta function is the special case (y(s,1).

@ The only singularity of (y(s, a) is also is a simple pole at s = —1

@ So we can get by analytic continuation

o0

2(k ) = Y- G-+ 20) = 24u (k. ])
n=0
@ Of particular interest to us are the values at s = —k = —-1,-2,---
Br+1(a)
—k.g) = — k14
CH(—k, a) P

and '
Bi+1 (%
2(k.j) = pBeald)
k+1
where By(a) are the Bernoulli polynomials
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Bernoulli Polynomials

@ There is a generating function

at

s tk te
Bk(a)— =
kZ:o Kl et —1

@ A finite sum

1 < r
o) =Y | L o ()
=Lt iz /
1
o If a=1 we have etfitl = 1t is an even function so that

e2 —e 2
Bi (3) =0 for all odd k
o If a = 1we have

il L (eheed)
et —1 2 2e5 _es

so that Bi(a) = %, and Bx(a) =0 for all odd k > 1
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Explicit Values for z (k, )

@ So the values we need for z(k, ) = 3252, (j + 2n)* are known
explicitly

1—
z(0,j) = TJ’ "virtual dimension”

. 1. . .
22.)) = i~ 1)( - 2)
. 1. . . .
2(4,)) = =300 = D)0 = 2)(3/* ~ 6] — 4)
Higher orders will need z(6, j) etc. which are also known explicitly
Also, z (k, %) =0=2z(k,1) for all even k =2,4,6,---

Sum over odd powers of charges won't appear because of Furry's
theorem (s invariance)

Incidentally, z(2, j) and z(4, j) are related to the finite sums Ej

even m

mz, Zj m* by changing j — —j .
even m

Mysterious.
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Abelian Gauge Theory with a Discrete Series of Fermions

@ So we have

1. . a 1 . . .2 . a2 3
8(0) =~ - DU-D %+ g5~ DU-2)(3-6-4) (£) +0(a?)

041
. /—\ )
0.5 1.0 1.5 2. 25 3.0
-0.1
-0.2
-0.3
-0.4
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Asymptotically Free Abelian Gauge Theory

@ So we have asymptotic freedom for 0 < j < 1 and j > 2
@ In addition, there may be a fixed point for 0 < j < 2.52753 at

W~ 20 whi i 20 < 60 <5 ¢ i yari
x ~ 33E7-6/-3) ' which varies between 57 < ¢ < 3 as j varies from
1to0

@ Itis IR stable for 0 < j <1 and 2 < j < 252753
o At the fixed point are & 2> 1 ; outside the range of perturbation theory

@ Whether there really is such a fixed point can only be verified
by lattice simulations

@ For 1 < j < 2 this theory is not asymptotically free; but could be
“asymptotically safe”: the coupling constant = tends at high energies
to a constant of order one

o How does one regularize the fermion multiplet for lattice
simulations?
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Asymptotically Free Abelian Gauge Theory (contd.)

2
Bla)
0.005 -
02 04 06 08 10 12 x
-0.005 -
-0.010 -
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Perturbatively Finite Abelian Gauge Theory

e For j = 1,2 both coefficients z(2, ) and z(4,;) vanish.

@ In fact all the sums of even powers of charged z(k, 1) and z(k,2)
vanish for k = 2,4,6, - - -; suggests that the beta function is
identically zero when j =1,2

@ Does this mean that abelian gauge theory of this type is a CFT,
analogous to N = 4 Super Yang-Mills?

@ Do they have Gravity Duals?
@ Or could be they be free field theories?
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G = 5SU(p,q)

@ The maximal compact sub-algebra of G = SU(p, q) is
K=U(1) ® SU(p) © SU(q))
The groups are SU(p, q) and S (U(p) x U(q)) or any of their covers

Of special interest is the case p = 2, g = 3 as the standard model
gauge group is S (U(2) x U(3))

Kand G have the same rank

So there are discrete series unitary representations of G

(Harish-Chandra Amer. J. Math. 77 (1955), 743-777)

@ They can be constructed one the space of complex analytic functions
of a p x g matrix Z satisfying Z1Z < 1 (This “Segal disk” is G/K)

@ Similar to the way the even states of the harmonic oscillator can be

thought as analytic functions on the unit disk in the complex plane

(the case p=1=gq)
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@ This gauge theory will have three coupling constants, much like the
standard model

All the information needed to calculate the beta functions is in the
character functions of the representations, for which there are explicit
formulas (i.e., explicit construction of the representations is possible
but not needed).

At two loops (which is enough to see if there are fixed points) the
basic calculations have been a long time ago. e.g., D.R.T.Jones,
Phys. Rev. D25 (1982) 581.

Some work is needed to adapt these results to a generic Lie algebra of
compact type

But indications are that there are again new classes of gauge theories
with non-trivial fixed points
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Other Discrete Series

@ Another example is SO(m) @ SO(n) C SO(m, n)

@ These are also holomorphic discrete series: they can be obtained as
analytic functions on SO(m, n)/S (O(m) x O(n))

@ There are quaternionic discrete series related to symplectic groups:
U(n) < Sp(n)

@ These are obtained as solutions to a higher dimensional Dirac
equation

@ There is a unified approach to all of the discrete series:M. Atiyah and
W. Schmid Inv. Math. 42, 1-62 (1977)

@ Thanks to Charles Nash for the last reference
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