

ICRR, D3, 藤末 紘三

空気シャワー勉強会2024@ICRR, 26th – 27th Mar.

- ・エネルギースペクトル,質量組成の観測結果 (TA/Auger)
- ・エネルギースペクトル, 質量組成の物理的解釈 (by Auger Collab.)
- ・空気シャワーの観測/シミュレーション比較 (by Auger Collab.)

A. Abdul Halim et. al., JCAP **05**, 024 (2023)

A. Abdul Halim et. al., arXiv:2401.10740v2 (2024)

わかって**いる**こと: (青色) わかって**いない**こと: × (橙色)

空気シャワー勉強会2024@ICRR, 26th – 27th Mar.

TA実験とAuger実験

・<u>2つの実験で全天をカバーしている</u> ・両実験ともにFD, SDのハイブリッド観測

UHECRの加速から観測までの流れ

空気シャワー勉強会2024@ICRR, 26th – 27th Mar.

UHECRの加速から観測までの流れ

本講演では、UHECRのエネルギースペクトルと質量組成の観測から

空気シャワー勉強会2024@ICRR, 26th – 27th Mar.

観測結果:エネルギースペクトルと質量組成

小天(TA), 南天(Auger)ともにスペクトルの構造
 ankle, instep, cutoffの存在を確認

○ 北天(TA), 南天(Auger)でinstep以降で スペクトルの形が違う ○ Auger は ankle 手前で最も質量組成平均が軽くなり、 エネルギーが大きくなるほど重くなる観測結果

× E ≥ 10^{19.5} eVの最高エネルギー領域では FDによる Xmax 直接観測の統計が十分ではない

観測結果:エネルギースペクトル,TA/Augerの比較

観測結果: 質量組成, TA/Augerの比較

TAのXmax測定: 検出器の効果を**含む** (観測Xmax vs. Sim.⊗検出器効果 Xmax) AugerのXmax測定: 検出器の効果を含まない (観測Xmax (fiducial volume cut) vs. Sim. Xmax)

→ TA/AugerのXmaxは直接比較できない

→ AugerのMix composition best fit ⊗ TAの検出器をTAの結果と比較

○ TA/AugerでMass compositionに有意な差はなし

A. Abdul Halim et. al., JCAP **05**, 024 (2023)

11

EPOS-LHC

Pure-N Galactic + pure-proton extragalactic (low E) + mixed extragalactic (high E) Source は一様分布

A. Abdul Halim et. al., JCAP **05**, 024 (2023)

A. Abdul Halim et. al., JCAP **05**, 024 (2023)

A. Abdul Halim et. al., JCAP 05, 024 (2023)

A. Abdul Halim et. al., JCAP 05, 024 (2023)

cutoff

Auger の見解:

最大加速 rigidity (R_{cut}~ 10^{18.2} V) & photodisintegration

	SCEN	ario 1	Scenario 2		
Galactic contribution (at Earth)	pure N		—		
$J_0^{ m Gal}/({ m eV}^{-1}{ m km}^{-2}{ m sr}^{-1}{ m yr}^{-1})$	(1.06 ± 0.01)	$.04) \times 10^{-13}$			
$\log_{10}(R_{ m cut}^{ m Gal}/{ m V})$	17.48	± 0.02	—		
EG components (at the escape)	LE	HE	LE	HE	
${\cal L}_0/(10^{44}{ m ergMpc^{-3}yr^{-1}})~^*$	6.54 ± 0.36	5.00 ± 0.35	11.35 ± 0.15	5.07 ± 0.06	
γ	3.34 ± 0.07	-1.47 ± 0.13	3.52 ± 0.03	-1.99 ± 0.11	
$\log_{10}(R_{ m cut}/{ m V})$	>19.3	18.19 ± 0.02	>19.4	18.15 ± 0.01	
$I_{\rm H} \ (\%)$	100 (fixed)	0.0 ± 0.0	48.7 ± 0.3	0.0 ± 0.0	
I_{He} (%)		24.5 ± 3.0	7.3 ± 0.4	23.6 ± 1.6	
$I_{\rm N}$ (%)		68.1 ± 5.0	44.0 ± 0.4	72.1 ± 3.3	
$I_{\rm Si}$ (%)		4.9 ± 3.9	0.0 ± 0.0	1.3 ± 1.3	
I_{Fe} (%)		2.5 ± 0.2	0.0 ± 0.0	3.1 ± 1.3	
$D_J (N_J)$	48.6 (24)		56.6 (24)		
$D_{X_{\max}}\left(N_{X_{\max}} ight)$	537.4(329)		516.5 (329)		
D(N)	586.0) (353)	573.1	(353)	

* from $E_{\min} = 10^{17.8} \,\text{eV}.$

D/ndof = 573.1/(353-16) → p-value = 1.7×10^{-14} (7.6 σ)

このシンプルなモデルが観測をよく再現しているとは言えない?

空気シャワー勉強会2024@ICRR, 26th – 27th Mar.

より複雑なシナリオ(1)

Source 内の interaction & sourceからの脱出もモデル化

Q. Luce et. al., ApJ 936, 62 (2022)

M. Unger et. al., PRD 92, 123001 (2015)

J. Gonzalez et. al., PoS ICRC2023, 288 (2023)

- ・衝撃波加速 (∝ E⁻²)でも source脱出時のhard なspectrumを説明できる (magnetic horizon effectも寄与の可能性)
- ・injectionとして pure component (~Si)でも 説明できる
- ・sourceの環境 (磁場, サイズ, 温度, etc) への制限

19

ハドロン相互作用モデルの systematic bias

空気シャワーの観測/シミュレーション比較

Augerのこれまでのハドロン相互作用モデルの検証結果

test	energy/EeV	$\theta/^{\circ}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
X _{max} moments [8–11]	\sim 3 to 50	0 to 80	no tension	tension	no tension (2.3c)
<i>X</i> _{max} : <i>S</i> (1000) correlation [11, 12]	3 to 10	0 to 60	no tension	tension	no tension (2.3c)
mean muon number [13, 14]	$\sim \! 10$	~ 67	tension	tension	tension
mean muon number [15]	0.2 to 2	0 to 45	tension	tension	
fluctuation of muon number [14]	4 to 40	${\sim}67$	no tension	no tension	no tension
muon production depth [16]	20 to 70	~ 60	tension	no tension	
<i>S</i> (1000) [17]	$\sim \! 10$	0 to 60	tension	tension	—

×観測に無矛盾なハドロン相互作用モデルはない (高エネルギーハドロン相互作用はうまくモデル化できていない)

- ・これまではSD信号や X_{max} を用いたモデル検証は独立にされてきた
 - ・しかし、それらは独立でない

・Augerの最近の論文 (arXiv:2401.10740v2、 submitted to PRD)では、 FD-SDハイブリッド観測イベントを用いて、 X_{max} 分布と粒子数密度S(1000)を同時に観測/モデル比較 23

空気シャワーの観測/シミュレーション比較

XmaxからSDアレイまでの大気厚さ

 $S(1000) = S_{\rm em} + S_{\rm had}$

- ・電磁成分(S_{em})はモデル間の違いほぼなし
- ・ハドロン成分(Shad)は違いあり

 $X_{\max} \to X_{\max} + \Delta X_{\max}$ $S_{had}(\theta) \to S_{had}(\theta) \times R_{had}(\theta)$

- ・Energy や primary particleによらずスケール
- ・ *R*_{had}(θ) は 2 つのフリーパラメーター *R*_{had}(θ_{max}), *R*_{had}(θ_{min})の関数

空気シャワーの観測/シミュレーション比較

観測

EPOS-LHC $\theta \in (0^\circ, 33^\circ)$ 40 40 of events 50 р 30 Jumper 25 4(30 NEM 20 15 20 10 5 10 700 800 900 1000 1100 1200 500 600 $X / (g/cm^2)$

$$\ln \mathcal{L} = \sum_{k} \sum_{j}^{\theta} \left(\frac{C_{jk} - C_{jk} + n_{jk} \ln \frac{n_{jk}}{C_{jk}}}{2} \right)$$

空気シャワーパラメーター**3つ** ($\Delta X_{\max}, R_{had}(\theta_{\max}), R_{had}(\theta_{\min})$)と

質量組成比 (f_p , f_{He} , f_0 , f_{Fe}) を変えて、観測をMCテンプレートでフィット

空気シャワーの観測/シミュレーション比較

SIBYLL 2.3d

2496.5

1015.7

521.6

517.6

486.7	454.2
476.3	451.6

QGSJET-II-04

4508.0

1674.8

684.4

673.9

2022.9

738.6

489.2

489.2

452.2

451.9

EPOS-LHC QGSJet II-04

30

• Sibyll 2.3d

20

X_{max}やS_{had}スケールなし

26

S / VEM

空気シャワーの観測/シミュレーション比較

$\ln \mathscr{L}_{\min}$	EPOS-LHC	QGSJET-II-04	SIBYLL 2.3d
none	2022.9	4508.0	2496.5
$\Delta X_{\rm max}$	738.6	1674.8	1015.7
$R_{\rm had} = {\rm const.}$	489.2	684.4	521.6
$R_{\rm had}(\boldsymbol{ heta})$	489.2	673.9	517.6
$R_{\rm had} = {\rm const.} \text{ and } \Delta X_{\rm max}$	452.2	486.7	454.2
$R_{\rm had}(\theta)$ and $\Delta X_{\rm max}$	451.9	476.3	451.6

S(1000)

空気シャワーの観測/シミュレーション比較

	$R_{\rm had}(\theta_{\rm min})$	$R_{\rm had}(\theta_{\rm max})$	$\Delta X_{\rm max}/({\rm g/cm^2})$	<i>f</i> _p (%)	f_{He} (%)	$f_{\rm O}(\%)$	<i>f</i> _{Fe} (%)	<i>p</i> -value (%)
EPOS-LHC	$1.15 \pm 0.01 \ ^{+0.20}_{-0.16}$	$1.16 \pm 0.01 \ ^{+0.14}_{-0.10}$	$22\pm3{}^{+11}_{-14}$	$21\pm3\ _{-11}^{+14}$	$20\pm4{}^{+15}_{-6}$	$44 \pm 5 {}^{+15}_{-6}$	$15\pm4\ ^{+7}_{-15}$	10.6
QGSJET-II-04	$1.24 \pm 0.01 \stackrel{+ 0.22}{_{- 0.19}}$	$1.18 \pm 0.01 \stackrel{+ 0.15}{_{- 0.12}}$	$47^{+2}_{-1}{}^{+9}_{-11}$	$16\pm2\ _{-10}^{+8}$	$11\pm4\ _{-7}^{+20}$	$36\pm5\ _{-5}^{+21}$	$37 \pm 5 {}^{+6}_{-22}$	19.8
SIBYLL 2.3d	$1.18 \pm 0.01 \stackrel{+ 0.21}{_{- 0.17}}$	$1.15 \pm 0.01 \stackrel{+ 0.15}{_{- 0.11}}$	$29 \pm 2 {}^{+10}_{-13}$	$13\pm2{}^{+18}_{-5}$	$15\pm4^{+15}_{-12}$	$40\pm5\ _{-5}^{+22}$	$32\pm5\ _{-25}^{+3}$	32.6

空気シャワーの観測/シミュレーション比較

- ・ΔX_{max} = +20~50 g/cm²
 → これまでの想定より
 平均質量組成は重いかもしれない
- ・スケール後の方が
 モデル間の < X_{max} > の違いは小さい
- ・DNNのバイアス (30 g/cm²)と 同程度のスケール

	$R_{\rm had}(\theta_{\rm min})$	$R_{\rm had}(\theta_{\rm max})$	$\Delta X_{\rm max}/({\rm g/cm^2})$	<i>f</i> _p (%)	f _{He} (%)	$f_{\rm O}(\%)$	<i>f</i> _{Fe} (%)	<i>p</i> -value (%)
EPOS-LHC	$1.15 \pm 0.01 \ ^{+0.20}_{-0.16}$	$1.16 \pm 0.01 \ ^{+0.14}_{-0.10}$	$22\pm3\ _{-14}^{+11}$	$21\pm3{}^{+14}_{-11}$	$20\pm4\ _{-6}^{+15}$	$44\pm5 \ _{-6}^{+15}$	$15\pm4\ ^{+7}_{-15}$	10.6
QGSJET-II-04	$1.24 \pm 0.01 \stackrel{+ 0.22}{_{- 0.19}}$	$1.18 \pm 0.01 \stackrel{+ 0.15}{_{- 0.12}}$	$47^{+2}_{-1}{}^{+9}_{-11}$	$16\pm2^{+8}_{-10}$	$11\pm4\ _{-7}^{+20}$	$36\pm5 {}^{+21}_{-5}$	$37 \pm 5 {}^{+6}_{-22}$	19.8
SIBYLL 2.3d	$1.18 \pm 0.01 \stackrel{+ 0.21}{_{- 0.17}}$	$1.15 \pm 0.01 \stackrel{+ 0.15}{_{- 0.11}}$	$29 \pm 2 {}^{+10}_{-13}$	$13\pm2^{+18}_{-5}$	$15\pm4{+15\atop-12}$	$40\pm5\ _{-5}^{+22}$	$32\pm5\ ^{+3}_{-25}$	32.6

UHECR観測のエネルギースペクトル,質量組成のまとめ

- ・ankle, instep, cutoff といったスペクトル構造が北天/南天で見えた
 - ・Auger解析では Peters cycle (rigidity-dependent加速) でankle手前までざっくりと形は説明できる
 - ・low max rigidity ($R \sim 10^{18.2}$ V) & hard source spectrum ($\propto E^{1.5}$) (source脱出時)
 - ・ankle: 2 つの異なるextragalactic成分の重ね合わせ or photodisintegrationによるproton + Galactic成分 Galacticの成分がどこまで伸びているか不明 (E~10^{16.5} – 10^{18.5} eVあたり? TALE infill + TALE + TA !!)
 - ・instep: He と CNO のpeakの重ね合わせ
 - ・cutoff: 最大加速 + photodisintegration
- TAの測定したエネルギースペクトルは $E > 10^{19.5}$ eV でAugerと異なる
 - ・Energy 推定手法の違いによるバイアスはない

・TA hotspotのみの寄与ではない (違いの理解はまだ)

- ・AugerのSD+DNNによるXmax測定
 - ・高統計で新たな構造が見えてきた?
 - ・FD観測とのバイアスあり
- ・ 空気シャワーの観測とシミュレーションは不一致
 - ・(ad-hocには) シミュレーションは hadron成分が少ない、Xmaxは浅い → 質量組成はもっと重い<u>かも</u>しれない
 - ・新たなハドロン相互作用モデル: EPOS-LHC-R, Sibyll*, QGSJET-III

Backup

伝搬中のエネルギー損失

Energy cutoff		γ	$\log_{10}(R_{ m cut}/{ m V})$	D	D_J	$D_{X_{\max}}$
Broken exponential	LE	3.52 ± 0.03	> 19.4	573 1	56.6	516 5
broken exponentia	HE	-1.99 ± 0.11	18.15 ± 0.01	575.1	50.0	510.5
Exponential	LE	3.53 ± 0.03	> 20.2	575 9	58.0	516.2
Exponential	HE	-2.06 ± 0.10	18.15 ± 0.01	575.2	00.9	510.2
Hyperbolic secant	LE	3.41 ± 0.07	18.29 ± 0.25	505.0	70.0	525 0
$\Delta = 0.5$	HE	-6.23 ± 0.18	16.33 ± 0.02	090.9	70.0	525.9
Hyperbolic secant	LE	3.53 ± 0.03	> 19.7	575 2	50.3	516.0
$\Delta = 1.0$	HE	-2.02 ± 0.10	18.15 ± 0.01	010.0	09.0	510.0
Hyperbolic secant	LE	3.65 ± 0.03	> 19.7	618 6	833	525 2
$\Delta = 2.0$	HE	0.32 ± 0.05	18.78 ± 0.01	010.0	00.0	000.0

$$J(E) = \sum_{A} J_{0A} \left(\frac{E}{E_0}\right)^{-\gamma} \exp\left(-\frac{E}{Z_A R_{\text{cut}}}\right)$$
$$J(E) = \sum_{A} J_{0A} \left(\frac{E}{E_0}\right)^{-\gamma} \operatorname{sech}\left[\left(\frac{E}{Z_A R_{\text{cut}}}\right)^{\Delta}\right]$$

Source evolution $\propto (1\!+\!z)^m$

Peters cycle に 従わない加速はありえるか?

$$\frac{dN(A)}{dE} \propto E^{-\gamma} e^{-E/E_{\text{max}}^A} \qquad E_{\text{max}}^A = E_0 Z^{\alpha} A^{\beta},$$

・現状、Peters cycle と他のモデルを区別できない

空気シャワー勉強会2024@ICRR, 26th – 27th Mar.

M. Unger et. al., PRD 92, 123001 (2015)

QGSJET II-04

Combined fit of energy spectrum & Xmax

D. Bergman *et al,* PoS ICRC2021, 338 (2021)

R. U. Abbasi et. al., ApJ 862, 91 (2018)

	Energy-inde	ependent Shift
	No Local Source (1)	With Local Source (2)
	Cosmol	ogical Source Distribution
$\gamma_{\rm cosmo}$	$1.60\substack{+0.05\\-0.05}$	$1.60\substack{+0.05\\-0.05}$
$R_{\rm cosmo}^{\rm max}$ (GV)	$5.0^{+0.3}_{-0.3} imes 10^9$	$5.0^{+0.3}_{-0.3} imes 10^9$
m _{cosmo}	< - 5.4	< - 5.8
$I_{A}^{9}(\%)$		
Н	$0.0\substack{+17.1\\-0.0}$	$0.0\substack{+12.6\\-0.0}$
He	$6.5^{+9.2}_{-4.0}$	$0.0^{+99.6}_{-0.0}$
Ν	$75.9^{+1.2}_{-1.2}$	$85.1\substack{+0.4\\-0.4}$
Si	$16.8^{+2.5}_{-2.3}$	$14.1^{+2.8}_{-2.4}$
Fe	$0.8^{+1.1}_{-0.5}$	$0.8\substack{+1.5\-0.5}$
		Local Source
Isotope		silicon-28
$\gamma_{ m local}$		< - 1.0
$R_{\rm local}^{\rm max}$ (GV)		$1.3^{+0.2}_{-0.1} \times 10^{9}$
$L_{\rm local}^{\rm CR} ({\rm erg \ s}^{-1})$		$< 3.7 \times 10^{42}$
D _{local} (Mpc)		<25.6
		Systematics
$\delta_E^{\text{PAO}}(\%)$	$-11.92\substack{+2.95\\-0.05}$	$-13.04\substack{+0.01\\-0.02}$
$\delta_E^{ ext{TA}}(\%)$	$-21.00\substack{+2.58\\-0.00}$	$-21.00\substack{+0.02\\-0.00}$
$\delta^{\mathrm{PAO}}_{\langle X_{\mathrm{max}} \rangle}(\%)$	-58^{+15}_{-10}	-58^{+14}_{-1}
$\delta^{\mathrm{TA}}_{\langle X_{\mathrm{max}} \rangle}$ (%)	3^{+7}_{-5}	4^{+7}_{-1}
$\delta^{\text{PAO}}_{\sigma(X_{\text{max}})}(\%)$	100^{+0}_{-17}	100^{+0}_{-1}
$\delta^{\mathrm{TA}}_{\sigma(X_{\mathrm{max}})}(\%)$	-33^{+4}_{-7}	-72^{+6}_{-1}
χ^2 /d.o.f.	110.6/54	67.8/50
$\Delta \operatorname{AIC}_c$		28.9
Favored vis-à-vis null hypothesis (1)		5.0σ
$(\chi_{\rm spectrum}^{\rm PAO})^2$	18.8	15.7
$(\chi_{\rm spectrum}^{\rm TA})^2$	55.2	13.4

P. Plotko et. al., ApJ 953, 129 (2023)

44