地表検出器用プラスチック シンチレーターの特性調査

東京大学 宇宙線研究所 M1 水野 敦之 For the ALPACA Collaboration

2024年空気シャワー勉強会

共同研究者リスト

水野敦之, M. Anzorena, C. A. H. Condori^B, E. de la Fuente^C, 後藤佳歩^D, 林優希^E, 日比野欣也^F, 堀田直己^G, A. Jimenez-Meza^C, 片寄祐作^H, 加藤千尋^E, 加藤勢, 川原一輝^H, 川田和正, 川島輝能, 小井辰巳^I, 小島浩司^J, 槇島拓音^H, 増田吉起^E, 松橋祥^H, 松本瑞生^E, R. Mayta^{K,L}, P. Miranda^B, 宗像一起^E, 中村佳昭, C. Nina^B, 西澤正己^M, 野口陸^H, 荻尾彰一, 大西宗博, 奥川創介^H, 大嶋晃敏^{D,I}, M. Raljevic^B, H. Rivera^B, 齋藤敏治^N, 塔隆志, 佐古崇志, 佐々木翼^F, 柴崎季哉^O, 柴田祥一^J, 塩見昌司^O, M. Subieta^B, 田島典夫^P, 鷹野和紀子^F, 瀧田正人, 多米田裕一郎^Q, 田中公一^R, R. Ticona^B, I. Toledano-Juarez^C, 土屋晴文^S, 常定芳基^{K,L}, 有働慈治^F, 碓井玲^H, 山崎勝也^I, 横江誼衡, 他 The ALPACA Collaboration

東大宇宙線研, サン・アンドレス大^B, グアダラハラ大^C, 中部大工^D, 信州大理^E, 神奈川大工^F, 宇都宮大^G, 横浜国大工^H, 中部大理工^I, 中部大天文台^J, 大阪公大理^K, 大阪公大南部研^L, 国立情報学研^M, 都立産業技術高専^N, 日本大生産工^O, 理研^P, 大阪電通大工^Q, 広島市大情^R, 原子力機構^S

Sub-PeVガンマ線天文学

★ Tibet ASy, HAWC, LHAASO実験によるsub-PeV天文学の発展

- sub-PeVガンマ線の初検出 (Crab Nebula) *Tibet ASy, PRL (2019)*
- PeVatronの有力候補の発見(G106.3+2.7) *Tibet ASy, Nat. Astron. (2021) HAWC, ApJ (2020)*
- sub-PeV銀河面拡散ガンマ線の初検出 *Tibet ASy, PRL (2021)*
- 40個を超えるsub-PeVガンマ線天体の検出 LHAASO, Nature (2021), ApJS (2024)

→ 北半球の空気シャワー観測装置による成果

ALPACA実験の紹介

Motivation

✓ 50cm*50cm*5cm シンチレーター (×4枚)におけるPMT信号の発光位置依存性が予想される

✓シンチレーター・容器・PMTを通しての発光量(電荷量)・ 信号の遅れ・信号立ち上がり時間の揺らぎ(t.t.s. = transit time spread)の 位置依存性の測定→モンテカルロシミュレーション(MC)に考慮

- ✓ ALPAQUITAのシンチレーター・PMT・BOXを用いて宇宙線研で測定
- ✓ 1m²検出器の上に置いた
 probe検出器(2inch PMT+2inch φシンチレーター)でトリガー
 ✓ 8箇所でADC, TDCの値を記録
- ✓ シンチレーターは2枚測定

* RG58 20m + 5D2V 150m (850ns delay in total)

各位置における電荷量の測定

1 (中心付近)と8 (角付近)の場所を比較すると20%程の差が見られた

信号の遅れとt.t.s.の位置依存性

Fitting Resultsのまとめ

1. 電荷量:-5.90
$$\left(\frac{x_{(cm)}}{50(cm)}\right)^2$$
+34.4 (pC)

2. 信号の遅れ:
$$\frac{\sqrt{(x_{(cm)}^2+69^2)}}{11.2}$$
 - 10.0 (ns)

3. t.t.s.[ns] :
$$\frac{\sqrt{(x_{(cm)}^2 + 69^2)}}{94.4} - 0.499$$
 (ns)

これらの性能をMCに導入し、データとの比較を 行った

AS+MD array location

14

300

MC simulation & Reconstruction

Reconstruction後のEvent selection

- ・最も多く粒子を検出した3台のうち2台はInner area
- ・空気シャワーフロントフィッティングの誤差残差 $\chi < 1.0$ m
- ・1.25粒子以上検知した検出器が4台以上
- ・天頂角< 50°

Data/MC comparison of sec θ and Log($\sum \rho_{FT}$)

Experimental data (2023/6/25, 20min) : 33093 events

Event selection後のMC event数: 4078 events

 $\Sigma \rho_{FT}$:総検出粒子数(エネルギーに比例)

実験データとよく一致 16

Data/MC comparison of Even-Odd opening angle

→ 信号の遅れとt.t.s.の影響を受ける物理量

Even-Odd opening angle: 2つの独立したarray(even-array, odd-array)により決定された方向 の開き角

Data/MC comparison of Even-Odd opening angle

→ 信号の遅れとt.t.s.の影響を受ける物理量

Summary & Next step

- ✓ ALPAQUITA実験で用いるシンチレーターの発光量(電荷量)・信号の遅れ・t.t.s.の位置依存性を測定し、MCに適用した
- ✓ DataとMCで天頂角分布・Sum ρ 分布・Even-oddの分布を比較した
 ->よく一致した

✓ シンチレーターの個体差を調べる

✓ MCのデータ量を増やす

Back up

Kato et al (ALPACA Collob.), 52, 85 (2021)

