

Andes Large area PArticle detector for Cosmic ray physics and Astronomy

ALPACA実験用2インチ径PMTのダイナミックレンジの拡張

Dynamic-range extension of 2-inch-diameter PMT

for ALPACA experiment

東大宇宙線研 D1 川島 輝能

T. Kawashima, M. Anzorena, C. A. H. Condori^A^, E. de la Fuente^B^, Y. Hayashi^C^, K. Hibino^D^, N. Hotta^E^, A. Jimenez-Meza^B^, Y. Katayose^F^, C. Kato^C^, S. Kato, I. Kawahara^F^, K. Kawata, T. Koi^G^, H. Kojima^H^, R. Mayta^I,J^, P. Miranda^A^, K. Munakata^C^, K. Nagaya^F^, Y. Nakamura, C. Nina^A^, M. Nishizawa^K^, R. Noguchi^F^, S. Ogio, M. Ohnishi, S. Okukawa^F^, A. Oshima^G^, M. Raljevich^A^, H. Rivera^A^, T. Saito^L^, Y. Sakakibara^F^, T. Sako, T. K. Sako, T. Sasaki^D^, S. Shibata^H^, A. Shiomi^M^, M. Subieta^A^, N. Tajima^N^, W. Takano^D^, M. Takita, Y. Tameda^O^, K. Tanaka^P^, R. Ticona^A^, I. Toledano-Juarez^B^, H. Tsuchiya^Q^, Y. Tsunesada^I,J^, S. Udo^D^, K. Yamazaki^G^, Y. Yokoe et al. (The ALPACA Collaboration)

ICRR, Univ. of Tokyo, IIF, UMSA^A^, Univ. de Guadalajara^B^, Dept. of Phys., Shinshu Univ.^C^, Fac. of Engn., Kanagawa Univ.^D^, Utsunomiya Univ.^E^, Fac. of Engn., Yokohama Natl. Univ.^F^, Coll. of Engn., Chubu Univ.^G^, Astro. Obs., Chubu Univ.^H^, Grad. Sch. of Sci., Osaka Metro. Univ.^I^, NITEP, Osaka Metro. Univ.^J^ NII^K^, Tokyo Metro. Coll. of Ind. Tech.^L^, Coll. of Ind. Tech., Nihon Univ.^M^, RIKEN^N^, Fac. of Engn., Osaka Electro-Comm. Univ.^O^, Fac. of Info. Sci., Hiroshima City Univ.^P^, JAEA^Q^

The ALPACA experiment (2025-)

✓ Goal: Gamma-ray observation from <u>sub-PeV energies</u> in the southern sky

✓ Extending the dynamic range of FT-PMT enables the experiment <u>w/ only FT-PMTs</u>

Required dynamic range for ALPACA

equivalent to a few PeV gamma-ray shower

Results reported at 2023 Autumn Meeting

R7725 (2-inch-diameter PMT)

- Made by Hamamatsu Photonics K.K.
- High voltage: 1750 V (Max.: 2000 V)
- Number of dynodes: 12
- Made three dividers with different ratios of voltage distributions

Results reported at 2023 Autumn Meeting

R7725 (2-inch-diameter PMT)

- Made by Hamamatsu Photonics K.K.
- High voltage: 1750 V (Max.: 2000 V)
- Number of dynodes: 12
- Made three dividers with different ratios of voltage distributions

Divider design for ALPACA 2024

Number of dynodes: 12

Voltage distribution ratios

Electrode		k	(DY1	D	12	DY3	D١	(4	DY5	DY	6	DY7	D	Y8	DY	9 DY	'10	DY	11	DY12		Ρ
	Normal		21.	4 5.	.65	11.1	. 5.	65	5.65	5 5.0	65	5.6	5 5	.65	5.6	55	5.65	5.6	65	11.3	1 5	.65	
	This tim	е	14.	5 3.	.03	6.99	3.	03	3.03	8 4.0	66	6.9	9 9	.09	9.0)9	9.09	9.0	09	14.5	5 6	.99	

- The total resistance is <u>~4.3 MΩ</u>.
- The sum of the ratios from the cathode (K) to the anode (P) is normalized to 100.
- The tapered ratio referred to the previous study* using the same PMT.

* Y. Zhang et al., JINST, 12, P11011 (2017).

Irradiation system of pulse laser to test PMT linearity

MIP measurement

✓ Gain is set at high voltages so that the signal amount of one particle corresponds to 120 pC/ptcl.

Measurement results of PMT linearity

Measurement results of PMT linearity

Measurement results of PMT linearity

What has been accomplished in this study

✓ The 8th-dynode readout enables us to measure <u>up to ~3PeV</u>.
 → almost achieved target

 \checkmark Even the 9th dynode allows us to measure <u>up to at least 1PeV</u>.

Divider design fixed for ALPACA 2024

H11284-50-02

For ALPACA experiments, Fast Time Response,

52 mm (2 inch) Diameter, Bialkali Photocathode, 12-stage, Head-on Type

VOLTAGE DISTRIBUTION RATIO AND SUPPLY VOLTAGE

Electrodes	K	Dy1	Dy2	Dy3	Dy4	Dy5	Dy	6 D	y7 I	Dy8	Dy9	Dy10) D	y11 D	y12 P	2
Ratio	4.8	1	2	.3	1	1	1.5	2.3	3	3	3	3	3	4.8	2.3	

Supply Voltage: +1750 V, K: Cathode, Dy: Dynode, P: Anode

PHOTON IS OUR BUSINESS

Summary

- The ALPACA experiment will start the observation of sub-PeV gamma rays in the southern hemisphere in 2025.
- Each 1m² scintillation detector needs a dynamic range of up to 1,000 particles (a few PeV).
- Attempted to extend the dynamic range of 2-inch PMT, R7725 by two methods, anode/dynode readouts and tapered divider.

☆ Dynamic range extended up to <u>700 particles (~3 PeV) with 8th-dynode signal</u>. → almost achieved target

☆ Hamamatsu Photonics K.K. checked the divider circuit, including withstand voltage, and found no problems

 \rightarrow The design was fixed for ALPACA 2024 (model number: H11284-50-02)

☆ We <u>already placed a large order</u> with Hamamatsu Photonics K.K.

Backup slide

Designs of the voltage dividers made in this research

R7725 (2-inch-diameter PMT)

- Made by Hamamatsu Photonics K.K.
- High voltage: 1750 V (Max.: 2000 V)
- Number of dynodes: 12 \rightarrow Higher gain than R7724
- Made three dividers with different ratios (Normal, Tapered 1 & Tapered 2)

Voltage distribution ratios

Ele	ectrode	К		Y1	DY	′2 [DY3	D	7 4	DY5	ים	Y6	DY	(7 D	Y8	D١	(9	DY	10	DY	11	DY	12	Р
	Normal		21.4	5.6	55	11.1	5.	65	5.6	5 !	5.65	5.6	55	5.65	5.	65	5.6	65	5.6	55	11.	.1	5.6	5
	Tapered	1	14.5	3.0)3	6.99	3.	03	3.0	3 4	4.66	6.9	99	9.09	9.	09	9.0)9	9.0)9	14.	.5	6.9	9
	Tapered	2	8.39	4.2	20	8.39	4.	20	4.2	0	4.20	4.2	20	4.20	5.	13	6.2	29	8.3	39	19.	.1	19.	1

- Each ratio is calculated from the catalog values of the resistances used.
- The total resistance of each divider is ~4.3 M Ω .
- The sum of the ratios from the cathode (K) to the anode (P) is <u>normalized to 100</u>.
- The "Tapered 1" ratio referred to the previous study* using the same PMT.

* Y. Zhang et al., JINST, 12, P11011 (2017).

How to extend the dynamic range of PMT??

Dynamic-range-extension method

1. <u>Dynode readout</u>

O Less expensive than using two PMT× One more channel needed than the tapered PMT

2. <u>Divider of tapered-voltage ratio</u>

O Even less expensive than dynode readout × Decreased gain $R_1 R_2 R_3 R_4 R_5$

 $R_1 \ R_2 \ R_3 \ R_4 \ R_5 \ R_6 \ R_7 \ R_8 \ R_9 \ R_{10} \ R_{11}$ Normal Tapered

H11284 (球R7725) ゲイン個体差

Conversion of UV-light intensity to the number of particles

✓ Estimate the conversion factor from filter transmittance to the number of ptcls.

Origin of PeV cosmic rays

PeVatron: PeV-cosmic-ray accelerators in our galaxy

M. Amenomori et al. ApJ, 678, 1165 (2008)

PeVatron candidate: Supernova remnant (SNR)

Sub-PeV gamma-ray observation

PeVatron searches have been mainly performed in the northern sky

 σ_N

Let's start southern sky survey!!

TeV gamma-ray map by H.E.S.S. Galactic Plane Survey

H.E.S.S. Collaboration, A&A 612, A1 (2018).

 ✓ So many high-energy gamma-ray sources found in the southern sky (~100 sources in HGPS)

✓ Some sources, including GC, are prominent PeVatron candidates

Location	4,740 m above sea level (16°23'S, 68°08'W)
Effective area	$\sim 83,000\mathrm{m}^2$
Mordal energy	$\sim 5{ m TeV}$
Angular resolution	$\sim 0.2^\circ~@100{\rm TeV}$
Energy resolution	$\sim 20\%$ @100 TeV
Field of view	$\sim 2{ m sr}$
Duty cycle	$\sim 100\%$
CR rejection power	$>99.9\%$ @100 TeV ($\gamma\text{-rays}$ efficiency $\sim90\%)$

Energy resolution of ALPACA

M. Amenomori et al., Phys. Rev. Lett. 123, 051101 (2019).

ダイナミックレンジの線形性のずれが5%以内 であることが必要

ALPACA sensitivity to the Galactic Center

✓ ALPACA can detect GC abv. 100 TeV in one year

Prototype array: ALPAQUITA (2022-)

- Start data taking on september 2022
- Start data taking on september 2022
 S.Kato et al., Experimental Astronomy (2021)
 1 MD construction to be completed in 2023 52:85-107
- ✓ ALPAQUITA can detect some gamma-ray sources abv. 10 TeV in one year
 2

HESS J1702-420A: Unidentified Gamma-Ray Source

- Hard spectral index ($\Gamma \sim 1.5$)
- No clear correlation with the ISM (from radio, IR, mm,...)
- Hot science topic for ALPAQUITA such as
 - Detection byd. 300 TeV?
 - Cutoff exists?
 - Maximal CR energy (PeVatron?)

Data acquisition system

✓ Intensity of the UV laser light is constant
 → Need to adjust the intensity with filters

Filter transmittance

\downarrow Catalog values and

measured value using nitrogen gas laser (337 nm)

*Measured by spectrometer (Hitachi 228A)

Physics, A285, p532-539 (1989).

✓ Each transmittance needs re-measurement using the UV laser (405 nm).

✓ To determine the transmittance of each filter, <u>data points are moved</u> along the horizontal direction so that <u>they are put on the dashed line</u>

Catalog values H7195, + 2400 V After moving points H7195, + 2400 V 2200 2200 $\mathbf{T} \equiv \mathbf{T}_{4}^{\mathsf{d}} \times \mathbf{T}_{\mathsf{n}}^{\mathsf{p}}$ $\mathbf{T} \equiv \mathbf{T}_{4}^{\mathsf{d}} \times \mathbf{T}_{\mathsf{n}}^{\mathsf{p}}$ 2000 2000 1800 1800 1600 1600 Charge [pC] 1400 1400 Charge [pC] 1200 1200 1000 1000 800 800 600 600 400 400 200 200 1.1 1.1 Ratio Ratio 0.9 0.9 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Percent-filter transmittance T_n^p (Catalog value) Percent-filter transmittance T_n^p (Calibrated value)

Transmittances of % filters have been determined!

✓ Linearity range of PMT is typically about two orders of digits
 ➢ Difficult to measure transmittances of all digit filters with a single PMT and HV
 ✓ <u>H7195 (2-inch φ) and H3178 (1.5-inch φ)</u> were used for each digit, and each HV was adjusted to measure in the linear region.

Uniformity of the filter transmittance

- % filters: ~5%
- digit filters: ~10%

The filter's center is put on the path of the laser in all measurements

Systematic uncertainty in transmittance

- ✓ Accuracy of the control of the motor is $\simeq 1^{\circ}$ (1 step)
- ✓ Systematic uncertainty is evaluated using the data points at $\theta = 0^{\circ}$, ±1.125°

透過率一様性の再現性

%フィルター透過率の確認

 $\chi^{\rm 2}$ / ndf

2.686/9

869.2 ± 5.264

Percent-filter transmittance T^p_n (Calibrated value)

桁フィルターの一様性

(Catalog value of T_m^d) = 10^{-m} (m = 0, 1, 2, ..., 5)

ペーセントフィルターの一様性

(Catalog value of $T_n^{\rm p}$) = 1 - 0.1 × n (n = 0, 1, 2, ..., 9)

