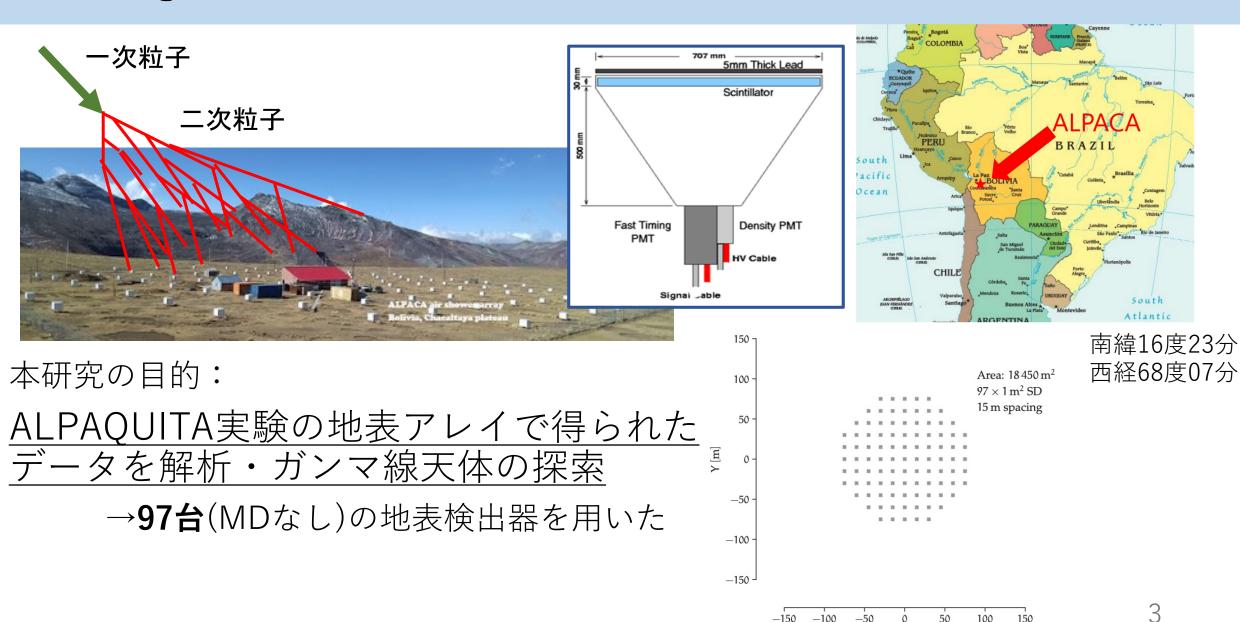
ALPACA39:ALPAQUITA実験データ解析

3.26空気シャワー研究会中部大学 修士1年 後藤佳歩

The ALPACA collaboration



後藤佳歩, M. Anzorena^A^, C. A. H. Condori^B^, E. de la Fuente^C^, 林優希^E^, 日比野欣也^F^, 堀田直己^G^, A. Jimenez-Meza^C^, 片寄祐作^H^, 加藤千尋^E^, 加藤勢^A^, 川原一輝^H^, 川島輝能^A^, 川田和正^A^, 小井辰巳^I^, 小島浩司^J^, 槇島拓音^H^, 増田吉起^E^, 松橋祥^H^, 松本瑞生^E^, R. Mayta^K,L^, P. Miranda^B^, 水野敦之^A^, 宗像一起^E^, 中村佳昭^A^, C. Nina^B^, 西澤正己^M^, 野口陸^H^, 荻尾彰一^A^, 大西宗博^A^, 奥川創介^H^, 大嶋晃敏^I^, M. Raljevic^B^, H. Rivera^B^, 齋藤敏治^N^, 裕隆志^A^, 佐古崇志^A^, 佐々木翼^F^, 柴崎季哉^O^, 柴田祥一^J^, 塩見昌司^O^, M. Subieta^B^, 田島典夫^P^, 鷹野和紀子^F^, 瀧田正人^A^, 多米田裕一郎^Q^, 田中公一^R^, R. Ticona^B^, I. Toledano-Juarez^C^, 土屋晴文^S^, 常定芳基^K,L^, 有働慈治^F^, 碓井玲^H^, 山崎勝也^I^, 横江誼衡^A^, 他 The ALPACA Collaboration

中部大工,東大宇宙線研^A^,サン・アンドレス大^B^, グアダラハラ大^C^,信州大理^E^,神奈川大工^F^, 宇都宮大^G^,横浜国大工^H^,中部大理工^I^, 中部大天文台^J^,大阪公大理^K^,大阪公大南部研^L^, 国立情報学研^M^,都立産業技術高専^N^,日本大生産工^O^, 理研^P^,大阪電通大工^O^,広島市大情^R^,原子力機構^S^

ALPAQUITA&本研究の目的

X [m]

RX J1713.7-3946

赤経	17 13 33.6 (hh mm ss)
赤緯	-39 45 36 (dd mm ss)
距離	1kpc
年龄	~1600yr
種類	Shell型SNR

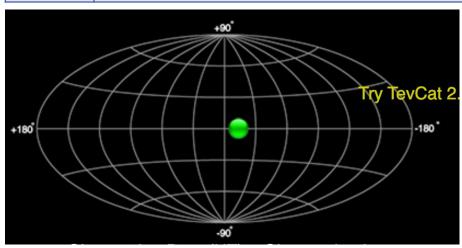


図.RX J1713.7-3946の座標,TeVCat

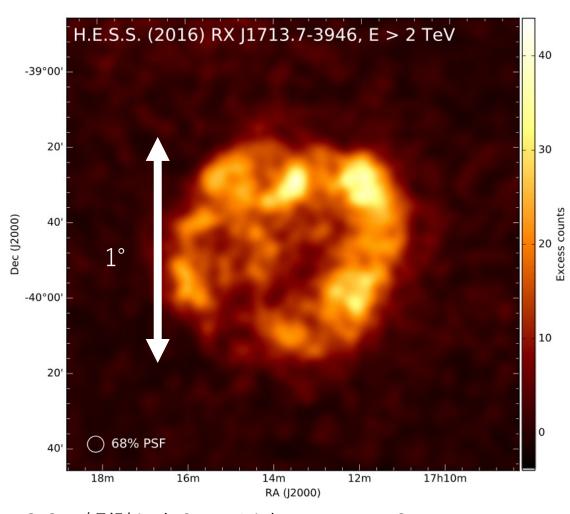
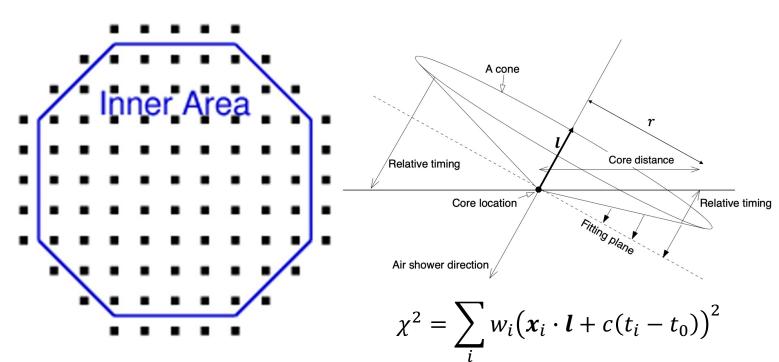
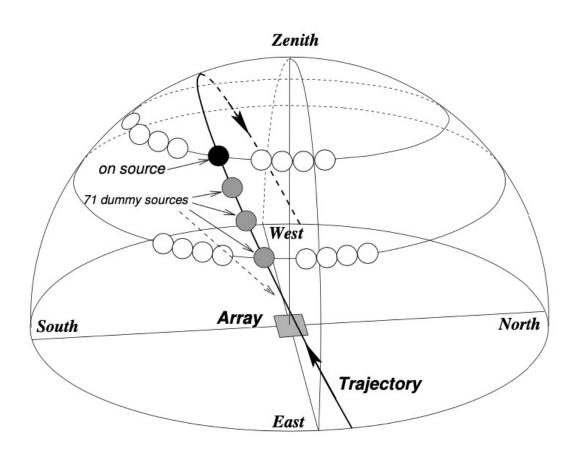



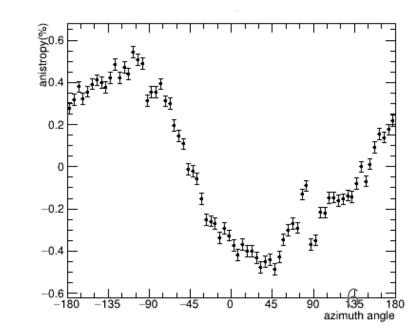
図.H.E.S.Sで観測した2TeV以上のExcess Counts map A&A 612 A6,2018


Data Analysis

- データ使用期間:23/4/7 ~ 23/11/30
- 観測時間:225.30days

- Event Selection :
 - 最も多くの粒子を検出した 3台のうち2台はInner area
 - 空気シャワーフロント フィッティングの誤差残差 χ が1m以下
 - ・1.25粒子以上検知した検出器が4台以上
 - ・検出総粒子数 (Σρ) が10 以上
 - ,天頂角 < 50°

Data Analysis ~BG推定等天頂角法~


On source: RXJ1713

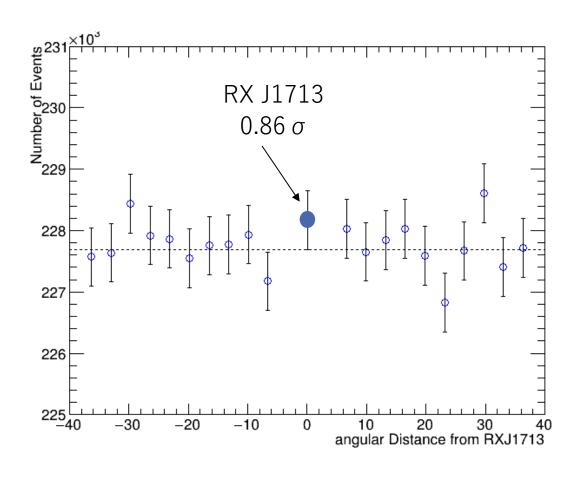
Off source: 20

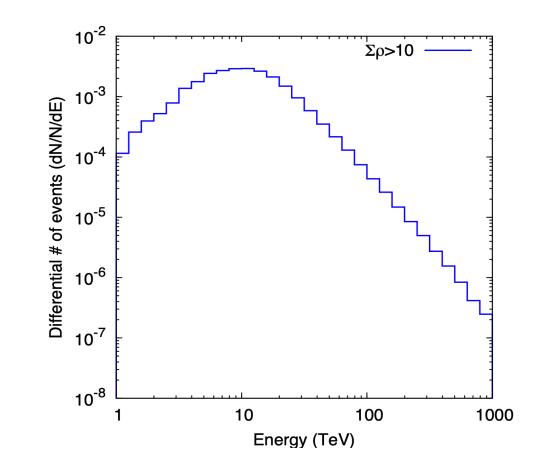
dummy source:等decでR.A方向に5°間隔(計71個)

隣り合うソース間の実角: 3.3° 解析窓半径(WS) =

$$6.9^{\circ} / \sqrt{\sum \rho_{ft}}$$

$$\max = 1.6^{\circ} , \min = 0.5^{\circ}$$


Monte Carlo method

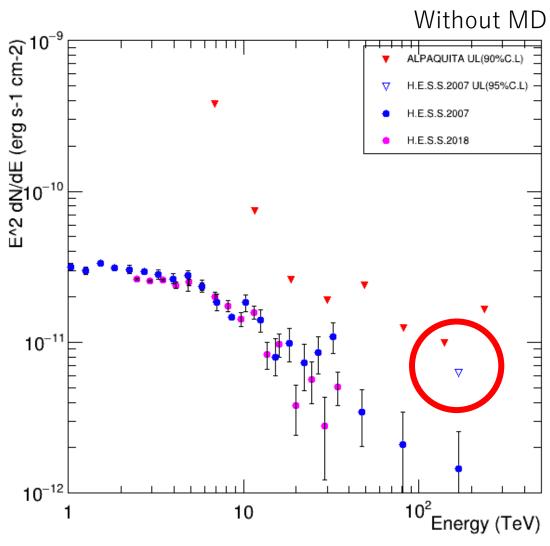

• SetUp -> Corsika 7.6400, geant4.10.04.p02

- イベント数: 4,858,000
- $\nu \in (300*300* \pi)^2$
- エネルギー領域:0.3TeV以上

Number of observed air-shower events

excess significance at 0.86σ (最頻エネルギー10TeV)

RX J1713 エネルギーごとのイベント数とガンマ線イベント検出有意性


Σρ	Energy(TeV)	Non	BG	Excess		UL of excess(90%)
10 ≤ Σ ρ <18	6.91	112155	111932.78	222.21	0.648	705.13
$18 \leq \Sigma \ \rho < 32$	11.65	83770	83543.41	226.58	0.764	636.56
$32 \le \Sigma \ \rho < 57$	18.66	24343	24389.51	-46.51	-0.290	229.8
$57 \le \Sigma \ \rho < 100$	30.01	5934	5955.28	-21.28	-0.269	114.37
$100 \le \Sigma \ \rho < 178$	49.11	1412	1373.99	38.00	0.999	89.71
$178 \le \Sigma \ \rho < 317$	82.34	369	370.09	-1.09	-0.055	30.93
$313 \le \Sigma \ \rho < 563$	139.75	138	142.40	-4.40	-0.360	16.82
563 ≦ Σ <i>ρ</i> < 1000	238.35	51	43.96	7.03	1.031	16.89
Total		228172	227751.45	420.54	0.859	1088.29

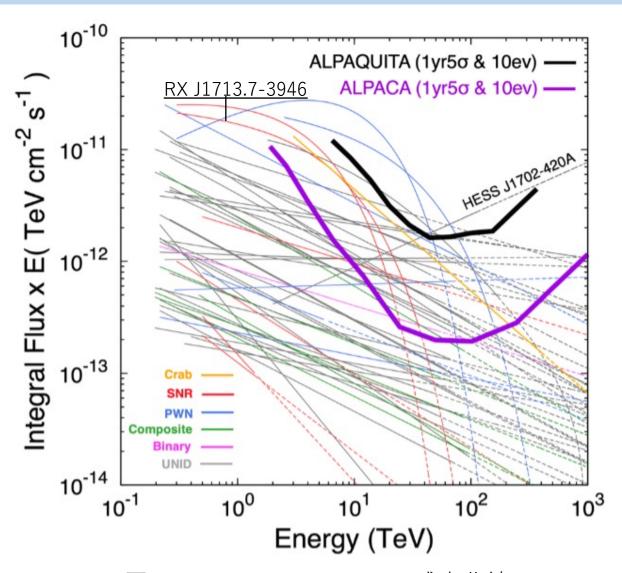
- ・ $\Sigma \rho$ が10から1000の間で、 対数スケールにおいて幅が均等 になるように8つBinning
- ・Non、BGは等天頂角法でBG 推定をしたイベント数
- ・Helene-PoissonULを求めた

有意なイベント数の超過なし

$$sig = \frac{N_{on} - \alpha N_{off}}{\sqrt{\alpha (N_{on} + N_{off})}}$$

Upper Limit on the gamma-ray flux of RX J1713

$$\alpha_{obs} = \frac{N_{obs}}{N_{sim}} \frac{N_{sim_all}}{\int E^{-\beta} dE \, S_{sim} T_{obs}}$$


$$f = \alpha_{obs} E^{-\beta} \quad (\beta = 2.5)$$

7TeV~200TeVのULを与えた

^{*}H.E.S.S.2007, A&A 531, C1 ,2011

^{*}H.E.S.S.2018, A&A 612, A6,2018

Sensitivity curve of ALPAQUITA with MD

ALPAQUITA(with MD)で 将来10TeV以上のエネルギー を観測できる天体

- HESS J0835-455 (Vela X)
- · HESS J1825-137
- · HESS J1908+063
- · HESS J1616-508
- HESS J1702-420A

図.ALPAQUITA with MDの感度曲線 S. Kato et al., Experimental Astronomy, 52, 85–107, 2021

Summary & Next

- ✓ALPAQUITA空気シャワーアレイ (MDなし) の225日分の データを用いて、RX J1713.7-3946方向から到来するガンマ 線を探索
 - 7TeV~200TeVのガンマ線flux上限値を得た
 - MD建設後、数年程度の観測で検出できると期待できる
- ✓各種解析条件の最適化
- ✔他の天体から到来するガンマ線探索

✓MD建設後、1年の観測でVela Xなど数個の天体からのガンマ線を検出できる