EU-MAHTS INFRA-2024-TECH-01-01 Summary

L. Bottura

With contributions of: M. Calvi, S. Casalbuoni, X. Chaud, C. Darve, F. Debray, K. Foraz, R. Losito, L. Garcia Tabares, J.M. Jimenez, E. Lelievre, J.M. Perez, L. Rossi, G. Riddone, C. Roux, D. Schulte, Ch. Simon, P. Spiller, S. Stavrev, P. Vedrine, M. Vretenar

20 December 2023

The leading theme of the proposal

- High Temperature Superconductors (HTS) are **game changers** in SC magnet technology:
 - <u>They have already enabled new technology</u>, because of the extraordinary current carrying ability in high field (e.g. Bruker 1.2 GHz, NHMFL 32T, CFS/MIT TFMC)
 - <u>They will displace existing technology</u>, because of the ability to operate at temperature higher than liquid helium, a minimal cryogen content, possibly different fluids
- **Time is ripe** for this step because:
 - The set challenges in HEP (e.g. FCC-hh, Muon Collider), high field science (e.g. EMFL, NHMFL, ILL, ESS), UHF NMR (Bruker), LS and FEL (EUXFEL), and fusion **cannot be met** unless we switch to HTS
 - There is increased awareness towards **sustainability and energy efficiency**, and the risk of the helium supply chain
 - There is a growing production infrastructure and availability of superconductor at decreasing price (**REBCO**)

EU-MAHTS

- Magnet technology Advances for EUropean research infrastructures through HTS:
 - Physics High Energy Physics (MuCol, FCChh), Nuclear Physics, Detectors
 - Material and Life Sciences Synchrotron Light and FEL, High Field Science, Neutron Spectroscopy, NMR
 - Energy and Mobility Magnetically confined fusion, motors and generators
 - Medicine Particle therapy, MRI

Main objective

- **Bridge the gap** between laboratory realizations and deployment (i.e. advance TRL by 2...3 units) by :
 - Developing technology bricks required for the next step in HTS magnets (presently TRL3 to TRL4)
 - Build and test demonstrators, "usable" in field, as engineering templates for a transfer to industry (achieve TRL5 to TRL6):
 - **40T class, small bore, all-HTS solenoid** (increase the field reach and prove all-HTS as viable solution for UHF)
 - 10T-class, large bore, large stored energy, all-HTS solenoid (manage large magnet dimensions, forces, stored energy)
 - **2T, 10mm period, 5mm gap all-HTS undulator** (extend photon energy range)

Relevance of demonstrators

Relevant development Relevant technology	High Energy Physics	Nuclear Physics	Light Sources and FEL	Neutron scattering	HF science and NMR	Medical applications (therapy and MRI)	Power generation (fusion, aeolics)	Transportation and mobility (motors, levitation, aviation)
Ultra-high field solenoids								
High field, large bore solenoids								
High field undulators and super-bends								

Additional items/proposals

- CIEMAT: **3D HTS coil winding demonstrator**, relevant to fusion magnets (toroidal and poloidal field coils in stellarators and helical devices)
 - Idea: make this a small-scale technology demonstration ?
- GSI/FAIR: HTS AC cables development and characterization, relevant to HEP and NP (synchrotrons), as well as fusion (central solenoid in tokamaks), and others (?)
 - Idea: make this a part of the technology development ?

Proposed structure

WP2 – Strategic Roadmap

Develop an inclusive strategic roadmap for HTS magnet technology

WP3 – Industry Cooperation

Support participation of industry, organization of internal tender actions and follow-up of industrial studies, design and manufacturing, exploitation

WP4 – HTS Magnets Applications

Review HTS magnet challenges towards higher performance, energy efficiency and sustainability. Study novel concepts and quantify impact of HTS magnet technology for the specific fields of application

WP5 - Materials and Technologies

Identify R&D crucial to HTS magnets and advance in areas of high relevance and return

WP6 – Demonstrators

Design and build demonstrator magnets, to be used "in field", and as templates for transfer of technology to industry

WP7 - Test Infrastructures

Exploit existing EU test infrastructure for high field testing in variable temperature environment, extending measurement capability with upgraded sensor technology or new measurement principles

Oversight, coordination & communication, diversity, dissemination and outreach

A first WBS attempt

WP Name	WP	Task	Task Name			
WP1 - Coordination and Communication						
	WP1	T1.0	Oversight			
	WP1	T1.1	Coordination and communication			
	WP1	T1.2	Diversity			
	WP1	T1.3	Dissemination, and outreach activities			
WP2 - Strategic R	oadmap					
	WP2	T2.1	Develop an inclusive strategic roadmap for HTS magnet technology			
WP3 - Industry Co	operation					
	WP3	T3.1	Support participation of industry			
	WP3	Т3.2	Organization of internal tender actions and follow-up of industrial studies			
	WP3	T3.3	Design and manufacturing			
	WP3	T3.4	Exploitation			
WP4 - HTS Magne	t Applications					
	WP4	T4.1	Energy efficiency and sustainability			
	WP4	T4.2	High Energy Physics and Nuclear Physics Applications			
	WP4	T4.3	Light Sources and FEL Applications			
	WP4	T4.4	Neutron scattering applications			
	WP4	T4.5	High Field Science and NMR			
	WP4	T4.6	Medical applications, including therapy and MRI			
	WP4	T4.7	Power generation, including fusion and aeolics			
	WP4	T4.8	Transportation and mobility, including motors, levitation and aviation			
WP5 - Materials a	nd Technologi	ies				
	WP5	T5.1	Energy efficient and sustainable cryogenics			
	WP5	T5.2	HTS cables and conductors for DC and AC magnet applications			
	WP5	T5.3	HTS winding, insulation control, mechanics and protection			
	WP5	T5.4	Diagnostics, sensors controls			
	WP5	T5.5	Radiation properties and radiation hardness			
WP6 - Demonstrat	tors					
	WP6.1	T6.1	All-HTS ultra-high field solenoid			
	WP6.2	T6.2	All-HTS standalone background field for laboratory testing			
	WP6.3	T6.3	All-HTS small period undulator			
WP7 - Test infrast	ructures	•				
	WP7	T7.1	High field testing			
	WP7	T7.2	Variable cryogenic temperature testing			
	WP7	T7.3	Diagnostics and measurements			

Partners - Beneficiaries (Grant Agreement)

- High Energy Physics CERN (RI) and associated laboratories (INFN+UMIL, CEA, CIEMAT)
- ✓ Nuclear physics FAIR (**RI**) and GSI

Partners - Associates (Consortium)

- Strategic partnerships (WP2)
 - High Field Science in discussion with EMFL (**RI**) and LNCMI
 - Neutron scattering in discussion with ESS
 - Magnetically confined Fusion in discussion with EUROFusion
- Other institutes and universities
 - Contribution defined in the consortium agreement (scope, milestones, deliverables, value)
 - Funding under the auspices of the Beneficiaries
- Industry
 - Access to consortium, covered by limited funding amount (e.g. 100 kEUR total ?) to formally qualify, participate to forum meetings, and respond to internal tender actions and/or project proposals
 - Contracts and grants placed and managed by one of the Beneficiaries (e.g. CERN ?)

WP1 – Coordination & Communication

- <u>Objective</u>: Oversight, coordination & communication, diversity, dissemination and outreach
 - Organization and follow-up, cost and schedule
 - Administrative and documentary support
 - Meetings and events
 - Diversity and equality
 - Education, dissemination and outreach

WP2 – Strategic Roadmap

- Objective: Develop an inclusive strategic roadmap for HTS magnet technology
- Previous strategy documents of relevance (initial list):
 - European Strategy for Particle Physics
 - CohMag and SciMag
 - Neutron Spectroscopy
 - Fusion
 - SC Global Alliance

Coordinator: TBD (leading strategy maker) Participants: CERN, EUXFEL, ESRF, EMFL, FAIR, ...

WP3 – Industry Cooperation

- <u>Objective</u>: Support participation of industry, follow-up of industrial studies, design and manufacturing (demonstrators), exploitation beyond the project
 - Exploit existing structures, in particular the "Accelerator - Industry Permanent Board"
 - Options considered for participation:
 - Internal tender actions: contract in response to a specification generated by the Consortium
 - Industrial research projects: grant proposals in response to topics of research generated by the Consortium

WP4 – HTS Magnets Applications

- Objective: Review HTS magnet challenges towards higher performance, energy efficiency and sustainability. Study novel concepts and quantify impact of HTS magnet technology for the specific fields of application
- Study areas:
 - Energy efficiency and sustainability
 - HEP and NP applications
 - LS and FEL applications
 - Neutron scattering applications
 - High field science and NMR
 - Medical applications, including therapy and MRI
 - Power generation, including fusion
 - Transportation and mobility

Coordinator: TBD (strong design and analysis capability) Participants: CEA, CERN, CIEMAT, EUXFEL, ESRF, FAIR, GSI, PSI, UMIL,¹⁴...

WP5 – Materials & Technologies

- Objective: Identify R&D crucial to HTS magnets and advance in areas of high relevance and return
- Technology R&D areas:
 - **Energy efficient and sustainable cryogenics**
- HTS cables and conductors for DC and AC magnet applications
- HTS winding, insulation control, mechanics and protection
- Diagnostics, sensors and controls
- Radiation properties and radiation hardness

Coordinator: TBD (laboratory test and characterization capability) Participants: CEA, CERN, EUXFEL, KIT, PSI, ...

WP6 – Demonstrators

- Objective: Design and build demonstrator magnets, to be used "in field", and as templates for transfer of technology to industry
 - WP6.1 All-HTS ultra-high field solenoid: 40 T class solenoid, 50 mm bore, compact winding, high engineering current density, cryogen-free for accelerator applications (horizontal beam)
 - WP6.2 All-HTS standalone background field for laboratory testing: 10 T class solenoid, 500 mm bore, split magnet with large forces, stored energy and energy density, cryogen-free. Relevant technology for split and super-bends in a beam line
 - **WP6.3 All-HTS small period undulator**: achieve 2 T gap field, with 10 mm period and 5 mm clear gap in an undulator demonstrator for next generation synchrotron light sources and FEL

Coordinator: TBD (engineering design and manufacturing capability) Participants: CEA, CERN, EUXFEL, INFN, PSI

WP7 - Test Infrastructures

- Objective: Exploit existing EU test infrastructure for high field testing in variable temperature environment, extending measurement capability with upgraded sensor technology or new measurement principles
 - High field testing: measure the electro-mechanical and thermo-physical characteristics of superconducting and resistive materials, cables, and small-size coils
 - Variable temperature: explore operation in different conditions of cryogenic heat transfer and cooling
 - Diagnostics and measurements: extend measurement capability by using upgraded sensing technology or new measurement principles
- Test infrastructures and test methods are instrumental to the success of the work proposed

Budget allocation

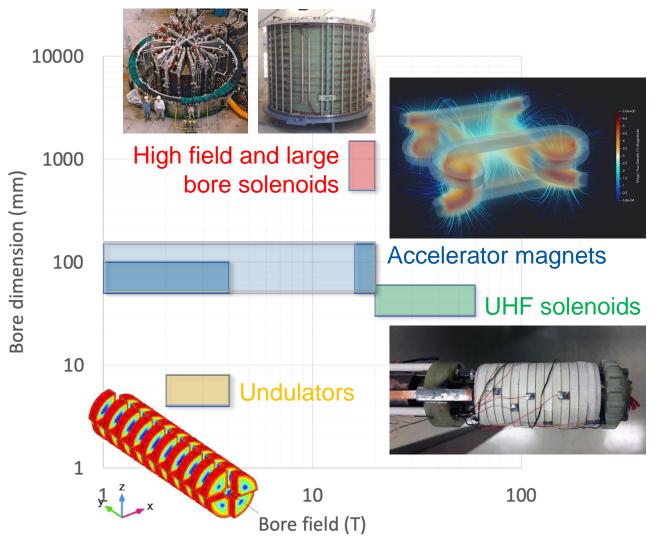
	Activity	(kEUR)	Matching (kEUR)			
WP1	Coordination and communication Administration	300 150				
WP2	Strategic Roadmap	300				
WP3	Industry Forum	2000				
WP4	HTS Magnet Applications	300				
WP5	Materials and Technologies	500				
WP6	WP6.1 – All-HTS 40T slavs solenoid WP6.2 – All-HTS 11T class split solenoid WP6.3 – All-HTS 2T Stort period undulator	2000 2000 2000				
WP7	Test Infra aruc ures	300				
Total		9850				

Summary and questions

- Q2: please reflect on the matching of the proposed developments and demonstrators to the general requirements. Did we identify the right demands and a strong research path ?
 - Q5: actual scope of work and deliverables need to be iterated and defined more precisely. Please provide feedback
 - Q3: is the initial idea of WBS suitable for the work proposed, and does it define well the respective roles?
- Q4: what is your proposal for participation, as beneficiary, associate, coordinator or task leader ?
- Q1: is there a better name and acronym for the proposal ?

Four HTS magnets challenges

Ultra-high field solenoids (from 20 T up to 40 T, and possibly beyond)


- Material science in high field
- NMR and life sciences
- Muon collider (muon beam cooling)
- Neutron scattering experiments
- High field/large bore/large stored energy solenoids (up to 20 T, 1 m bore)
- HEP experiments (e.g. axion searches)
- Fusion
- Muon collider (muon beam production)
- Hybrid (SC/NC) high field magnets
- **High field/low consumption/compact dipoles and quadrupoles** (up to 20 T, up to 150 mm bore, up to 20 K)
- FCC-hh: 14 T...20 T, 50 mm
- Muon collider (collider ring): 16 T...20 T, 150 mm, 5 W/m
- HEP experiments (e.g. axion searches)
- Low consumption beam line magnets, light source main ring magnets, medical applications: 1 T...4 T
- Motors and generators

High field undulators and super-bends

- Synchrotron light sources, Free electron lasers: 2 T gap field, 5 mm clear gap, short period (10 mm range)
- Synchrotron light sources: Super-bends: ≈ 10 T peak, ≈ 1 Tm integral

Four HTS magnets challenges

Materials and Technologies

Energy efficient and sustainable cryogenic technology

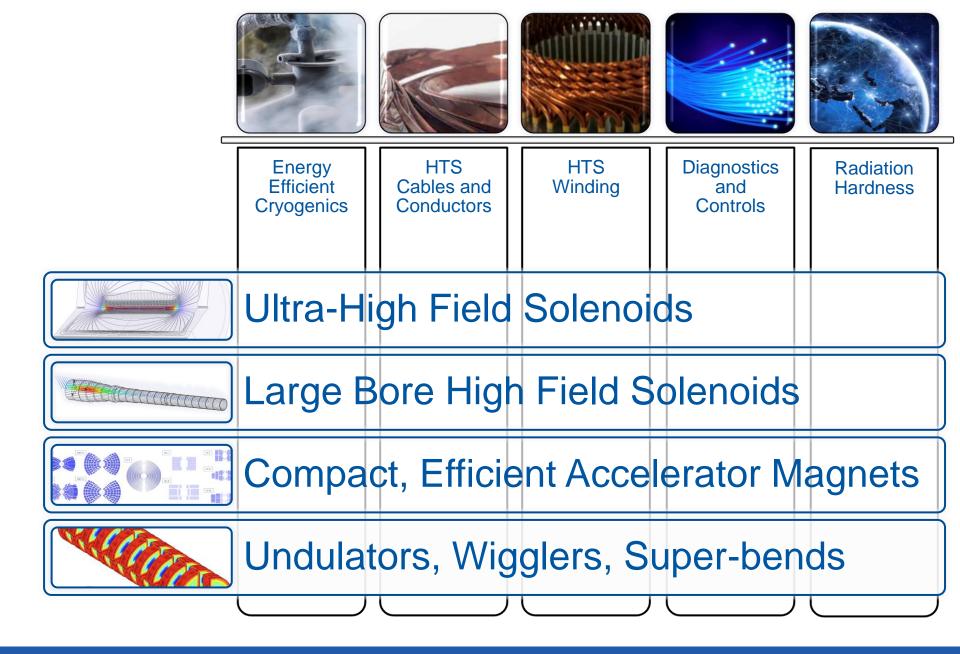
- Cryogenic fluids and cycles for high temperature (20 K)
- Heat management (dry, indirectly cooled, gas cooled,...)
- Minimal cryogen (reduced fluid inventory)

HTS cables and conductors technology

- High current cables and conductors (10...50 kA)
- Cables for DC and ramped (AC, low loss) magnets

HTS winding technology

- 3D shapes (non-planar coils)
- Interturn insulation/resistance control
- Joints and terminations
- High current- and energy-density (implications for mechanics and protection)


Diagnostics, sensors and control technology

- Quench detection (voltage and other techniques)
- Field control (field shaking, field feedback)

Radiation properties and radiation hardness

- HTS superconductors
- (Insulators)

Relevance of magnet challenges

Relevant development Relevant technology	High Energy Physics	Nuclear Physics	Light Sources and FEL	Neutron scattering	HF science and NMR	Medical applications (therapy and MRI)	Power generation (fusion, aeolics)	Transportation and mobility (motors, levitation, aviation)
Ultra-high field solenoids								
High field, large bore solenoids								
High field, low consumption, compact dipoles and quadrupoles								
High field undulators and super-bends								

Are solenoids relevant ?

- Solenoid model coils built with modest conductor lengths and size (few km) can probe performance limits at extreme values:
 - Field (20 T...40 T) high and ultra-high field characterization of the critical surface $J_{c}(B,T,\alpha)$
 - Force and stress (500 MPa...700 MPa) engineering test at levels relevant and beyond fullsize accelerator magnets
 - Current density (600 A/mm²...900 A/mm²) and energy density (300 MJ/m³) – quench detection and protection in a new regime, where present technical solutions do not work (detection time would be too short, quench heater power would be too high)
 - "Simple" engineering, fast turnaround

