FASER $\nu 2$

Akitaka Ariga (University of Bern / Chiba University) on behalf of the FASERv2 working group

FASER ν and FASER ν 2

Motivations

- FASER ν @LHC-Run 3 (1.1 ton)
 - First study of collider neutrinos at TeV energies
 - v_e/v_μ universality in cross sections and charm production, QCD
- FASER ν 2 @HL-LHC (~20 ton)
 - Tau neutrino physics, precise measurement of cross sections, Lepton Flavor Universality, NSI, rare processes
 - QCD, saturation, cosmic rays

FASERv and FASERv2 detectors

- On-axis, to maximize # of neutrino interactions
- Flavor sensitivity
- Charge ID for muons $(\nu_{\mu}/\bar{\nu}_{\mu}$ separation, $\nu_{\tau}/\bar{\nu}_{\tau}$ separation)

- FASER v^2 detector: 3300 emulsion layers interleaved with 2 mm-thick tungsten plates
- Veto and interface detectors to the FASER2 spectrometer.

Emulsion/tungsten neutrino target

FASERv2

- The total volume of the tungsten target is 40 cm \times 40 cm \times 6.6 m, and the mass is 20 tons.
 - One replacement per year with muon BG reduction
 - 3 or more if muon BG is not reduced

FASERv and FASERv2: expected number of events

Based on "F. Kling and L.J. Nevay, Forward Neutrino Fluxes at the LHC, <u>Phys. Rev. D 104, 113008</u>" and "J.L. Feng et al., The Forward Physics Facility at the High-Luminosity LHC, <u>arxiv:2203.05090</u>"

(v int. rate estimated using Sibyll 2.3d)

(DPMJET 3.2017)

		$\begin{array}{c c} \nu_e + \overline{\nu_e} \\ \mathbf{CC} \end{array}$		$\begin{array}{c} \nu_{\tau} + \overline{\nu_{\tau}} \\ \mathbf{CC} \end{array}$	$v_e + \overline{v_e}$ CC	$ \begin{array}{c} \nu_{\mu} + \overline{\nu_{\mu}} \\ CC \end{array} $	
	v int.	0.9k	4.8k	15	3.5k	7.1k	97
FASERν (1.1 tons, 150 fb ⁻¹)	ν int. with charm	~0.1k	~0.5k	~2	~0.4k	~0.7k	~10
	ν int. with beauty	-	~0.05	-	-	~0.1	-
	v int.	178k	943k	2.3k	668k	1400k	20k
FASERv2 (20 tons, 3 ab ⁻¹)	ν int. with charm	~20k	~90k	~0.2k	~70k	~100k	~2k
	ν int. with beauty	~2	~10	~0.02	~7	~10	~0.2

5

Emulsion film

A minimal detector: Silver bromide (AgBr) Cristal

- diameter = 200 nm
- detection eff. = 0.16/crystal
- noise rate = 0.5x10⁻⁴/crystal
- volume occupancy = 30%

10¹⁴ detection channels per cm³

Emulsion gel = composite of AgBr crystals and gelatin

Emulsion film has two layers of $65-\mu$ m-thick emulsion layer on both sides of 210- μ m plastic base

Core-shell structure

<u>"Nuclear Emulsions",</u> <u>https://link.springer.com</u> /chapter/10.1007/978-3-030-35318-6_9

AgBr crystals of 200 nm diameter

Microscope view in an emulsion detector

Antiproton annihilation taken in AEgIS

7

200 microns

3D view of emulsion detector

- 3D high resolution hits
- Work as tracker
- dE/dx proportional to darkness (Number of grains)

150 μm x 120 μm x 50 μm

Observed v_e candidate in FASERv

Status of FASERv2 tasks as of 29/2/2024

Bold lines are discussed in next slides

Emulsion films

- Film production of ~550 m^2 per year
- Film shape still to be defined
- Emulsion production facility in Nagoya University
- Performance tests in realistic conditions (long-term performance)

Tungsten target

- 2-mm-thick tungsten plates, purity>99.95%
- Will purchase sample plates and start testing them

Mechanical structure, assembly method, cooling system

- Mechanical structure to hold 20-ton emulsion-tungsten target
- Keep temperature as low as possible to prevent "fading"
- Prototype test is under preparation
- Emulsion facility
 - Dark room for assembling and development
 - Further investment may be needed depending on the film shape, etc.

Emulsion readout system

- Development of HTS3 in Nagoya University
- Considering 2nd facility in Chiba University

- Veto, interface tracker and charge ID
 - Combined analysis with FASER2
 - Detector technology yet to be defined
- Performance, physics sensitivity studies
 - Simulation studies to be done
 - Test reconstruction with real data in FASERv with FASERv2 configuration
- Muon background reduction
 - Sweeping magnet

Long-term performance test of emulsion

To check if the emulsion perform well when developed after long-term exposure.

- Track recognition efficiency with HTS
- Noise density

Concerned "Fading effect" and "Fog increase"

Fading & noise increase are both accelerated by high temperature

2023 test beam in Augst

• 45 emulsion films, exposed to muon beam

Delayed photo-development to study the long-term performance

- 45 films \rightarrow 9 groups of 5 films
- 7 groups are put in 21°C and 2 groups in 12°C until the development.

- The evaluation is in progress for the samples up to 3 months.
- No significant increase in the noise density is observed. The sensibility / efficiency will be checked.

N films	Films	Time until development	Storing temperature	Fog density (/(10 μm) ³)	Efficiency	
5 films		0	21°C	3.1±0.3		
5 films	Cutting and	1 month	21°C	3.1±0.3	Will be checked	
5 films	Japan	3 months	21°C	2.8±0.3		
5 films		9 months	21°C	To be developed		
5 films		3 months	12°C	2.7 <u>±</u> 0.3		
5 films		9 months	12°C	To be developed		
5 films		0	21°C			
5 films	Without	3 months	21°C	3.3±0.3		
5 films	resetting	9 months	21°C	To be developed		

9-month sample will be processed in May-June 2024.

No fog increase is observed in 3 months scale

Film shape

- 40 cm × 40 cm film cannot be produced by the current film production machine
- Two options
 - $2 \times 40 \text{ cm} \times 20 \text{ cm}$
 - Stay close to LoS ☺
 - Dead area in the middle $\ensuremath{\mathfrak{S}}$
 - Double the number of films $\ensuremath{\mathfrak{S}}$
 - 25 cm × 64 cm
 - Keep number of films and area $\ensuremath{\textcircled{\sc o}}$
 - Cover wider η range \odot
 - No dead area 🙂
 - Decrease # of interactions ⊗
- Both options are to be considered wrt physics performances

Detector assembling

- Currently in FASER ν
 - Assembling in surface lab, ~12 days

- Transport an underground buffer area to avoid cosmic rays, 1 day
- Transport 1.3-ton detector to the LHC tunnel, 1 day
- After irradiation, bring again to the surface lab, 1 day
- Disassemble and development, ~ 10 days
- For FASERv2, how can we assemble 20 times bigger detector?
- Can we bring up and down 20 tons of tungsten? or 20 boxes of FASER ν ?
- The support structure should apply 1 atm equivalent pressure to keep an alignment between films

Ken Ohashi (Bern), Akitaka Ariga (Bern/Chiba)

The current idea: Assembling on site

3 m, 10-ton boxes, 1650 layers per box

Prototype

6kg Steel plates x 20 Total ~160 kg

Inflatable pusher to control force

Change pressure and test the mechanism

Prototype production / test in Spring – Summer 2024

Increase tungsten thickness to reduce emulsion film cost

- FASERv2 plans to use 2-mm-thick tungsten plates instead of 1-mm-thick plates to reduce the emulsion cost (2MCHF/year -> 1MCHF/year).
- Need to make sure a reconstruction will work in high track density environment.
- We are testing feasibility using one film every two (only odd film number) in the FASER ν data (1-mm-thick tungsten).

18

Demonstration of reconstruction using one in every two films in the FASER ν data

- A v_e candidate in the FASERv data was reconstructed using only odd plates.
 - The vertex and the primary electron candidate are successfully found.
 - Most of tracks at the vertex are found except for a track with a few GeV.
- Preliminary conclusion: Reconstruction with 2.2-mm-thick tungsten plates in the muon background (at ~10⁵ muons/cm²) seems feasible.
- Further studies with MC and tunings are needed.

Demonstration using another neutrino event in the FASERv data

- Another v_{μ} candidate event in FASERv was reconstructed using only odd plates.
 - The vertex and the primary muon candidate are found.
 - All the primary tracks are found.

Test with only odd plates

Interface Tracker (IFT) for FASERv2

- Interface Tracker (IFT) is needed to identify charge of muons $\rightarrow \nu_{\mu}, \nu_{\tau} \leftrightarrow \bar{\nu}_{\mu}, \bar{\nu}_{\tau}$
 - Interface FASER ν 2 and FASER2
- Three technical options are currently considered:
 - > SciFi: scintillating fiber with O(100 um) diameter (LHCb: 250 um)
 - > Gas detector: Micro-Megas, GEM, etc
 - > Silicon strip detector: consisting of ATLAS SCT modules as the current IFT
- The performance of track matching with emulsion and FASER2 tracker has to be studied with the realistic geometry
- The technical decision will also strongly depend on the tracker design of FASER2

Muon flux map measurement

To validate the FLUKA/BDSIM simulations, 19 small emulsion detectors were installed in July-Sep 2022 in the region ~2 m from the LOS, collecting 9.5 fb⁻¹ of data. Data/MC comparison is ongoing.

Sweeper magnet to reduce BG muons

- To increase the duration of data taking with a FASERv2 detector, a reduction of muon rate is vital
- Maximum track density in emulsion should be kept below ~ $5x10^5$ tracks/cm² \rightarrow 2 months without muon reduction
- Install a sweeper magnet upstream to reduce the muon flux
- Previous studies by CERN-FLUKA team showed a pessimistic result $\ensuremath{\mathfrak{S}}$
- Further effort is needed! Simulation studies with BDSim or others

Cost estimate

Item	Cost (kCHF)	How many years	Sub-total	Comments
Fixed costs				
				2-mm-thick 40x40 cm ² , 3300 plates
Tungsten	2000		2000	+10%
Emulsion readout	1700		1700	
Expert of the readout				
system	500		500	
Veto / interface detectors	200		200	
Support structure	400		400	
Cooling system	100		100	
Annual cost				
Emulsion	1000	10	10000	$40x40 \text{ cm}^2$ 3300 films
	1000		10000	
Chemicals for development	50	10	500	
Personnel for scanning	50	10	500	
Total			15900	

FASERv2 schedule

	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
	Run 3	Run 3	Run 3				Run 4	Run 4	Run 4 Year-1	Run 4 Year-2	
MC studies and documentation	_			TDR							
Detector support and cooling system	-	R&D			Cor	struction					
Tungsten plates		Tests			P	urchase and	tests				
Readout system (HTS3?)		Developme	nt of HTS3	+	Dedicated	system for Fr	u2: producti	on and tests			
Emulsion films		Stability stu	dy					Production	Production		
CERN darkroom facility for the assembly and development											
Construct the interface detector						Constructio	on Insta	llation			
Construct the veto detector								-			
Cost					Tungsten ~2 Readout ~2 Support ~0 Cooling ~0. IFT+veto ~0	2M .2M 4M 1M .2M		Emulsion 1.1M (for 2031)	1.1M (for 2032)		1.1M/year during Run

Summary

- FASERv2 aims ~ $O(100) \times$ FASERv in interaction statistics
- Demonstrating FASERv2 concepts with the ongoing FASERv analyses
- Several R&D are ongoing.
 - Long term performance test with Test Beam 2023 (also TB 2024)
 - Prototypes to test assembling scheme
 - Reconstruction with reduced segmentation demonstrated
 - Choice of interface detector
- FASERv2 working group regularly meets once a month
- The time scale fits with the global FPF timeline
 - LOI 2025, TDR 2026, funding 2027/28, construction 28-, data taking 2032-

Backup

ν detection and acceptance

- Vertex detection efficiency after requiring at least 5 charged particles
 - Using charged tracks and γ rays with p > 0.3 GeV and $\tan \theta < 1$ (relative to the neutrino direction)
 - − → may change to p > 1 GeV and tan $\theta < 0.5$

- Additional inefficiencies for v_{μ}
- 1. 400 mm tungsten from the most downstream layer would be used for μ ID (400 mm/3300 mm = 12%).

2. In addition, ~5.4% of μ^- (~3.5% of μ^+) will go side out before passing through enough material for the muon ID.

27

Detection of tau decays

- Special resolution of hits in the emulsion
 - 0.5 μm (measured in the FASER ν pilot run data)
- \rightarrow Angular resolution with the arm length of 10 mm = $0.5 \times \sqrt{2}/10000 = \sim 0.1$ mrad
- To detect a kink,
 - tau should cross at least one emulsion layer,
 - kink angle should be larger than four times the angular resolution and more than 0.5 mrad
 - \rightarrow reasonable efficiency for τ decays (75% for 1-prong decays)

flight length / kink angle

Emulsion readout systems

- Total emulsion film surface in FASERv2: ~530 m²/year
 - ~2400 h/year with HTS
 - or ~420 h/year with HTS2

	Field of view (mm ²)	Readout speed (m²/h/layer)
S-UTS	0.04	0.0072
HTS-1	25	0.45
HTS-2	50	2.5
HTS-3	?	?

FASERv steps, 3 detectors per year

CERN Emulsion Facility

- Dark room at CERN established in 8os → Obsolete
- Emulsion experiments are increasing: NA65/DsTau, FASERv, SND@LHC, SHiP, test beams...
- Refurbished recently, big thanks for supports from CERN!
- Experiments share installation and equipment

Dark room operation Assembling of FASER ν and SND@LHC

Temperature controlled developer bath

Odditional and the second s

Microscope

