# Neutrino Rate Predictions For FASER (and the FPF) 2402.13318

Max Fieg + FASER collaboration

FPF7







# Neutrinos are one physicist's treasure, and another's garbage that must be taken out...

#### Neutrinos as a signal

- $\sigma_{\nu N}$  measurements
- forward hadron production
- DIS measurements to constrain PDF's
- BSM properties of neutrinos

#### Neutrinos as a background

- Dark photons
- ALPS
- Mili-charged particles



#### **Bottom Line:**

Neutrinos are involved in all forward physics analyses, so we study their **production**, **interaction**, and their **uncertainties** in detail for **Run 3**, **Run 4/HL** measurements

#### One Slide Summary

1) Update the fast neutrino flux simulation for Run 3 and Run 4 configurations

2) Produce different predictions for neutrino production from light and heavy hadron decays and their uncertainties

 $\sqrt{s}$  , magnets+LHC ,  $heta_{1/2}$ 

Flux  $_{\nu\alpha} \pm \delta_{\alpha}$  $(\pi^{\pm}, K, ...) + (D, \Lambda_{c}, ...)$  3) Compare different predictions for the CC DIS cross section and their uncertainties

 $\sigma_{\nu_{\alpha}N}(CC) \pm \delta$ 

#### One Slide Summary

1) Update the fast neutrino flux simulation for Run 3 and Run 4 configurations

2) Produce different predictions for neutrino production from light and heavy hadron decays and their uncertainties

3) Compare different predictions for the CC DIS cross section and their uncertainties

 $\sqrt{s}$  , magnets+LHC ,  $heta_{1/2}$ 

Flux 
$$_{\nu\alpha} \pm \delta_{\alpha}$$
  
 $(\pi^{\pm}, K, ...) + (D, \Lambda_{c}, ...)$ 

 $\sigma_{\nu_{\alpha}N}(CC) \pm \delta$ 

Neutrino CC rate predictions for upcoming FASER analyses. Improves the simulation for future FPF measurements. Also serves as a review of a lot of great work that's recently been done.

#### **Quick Review**

FASER is a decay volume experiment equipped with muon vetos, trackers and a calorimeter and is designed to search for the decays of BSM LLP's

• Discovered the first collider neutrinos

FASER $\nu$  is a high-density tungsten target, interleaved with emulsion for high spatial resolution tracking

#### Larger upgrades FASER2, FASER $\nu$ 2 proposed for the FPF



### **Quick Review**

FASER is a decay volume experiment equipped with muon vetos, trackers and a calorimeter and is designed to search for the decays of BSM LLP's

• Discovered the first collider neutrinos

FASER $\nu$  is a high-density tungsten target, interleaved with emulsion for high spatial resolution tracking



#### **Neutrino Production Modelling**

- Neutrinos are dominantly produced from hadron decay with 2 components:
- 1. Light hadrons:  $\pi^{\pm}$ , *K*, ...
  - Modelled phenomenologically
  - Can be long-lived
  - $v_e, v_\mu$
- 2. Heavy hadrons:  $D, D_s, \Lambda_c, \dots$ 
  - Can be treated with pQCD, with some caveats
  - Prompt decays
  - Only source of  $v_{\tau}$

Light and heavy hadrons are treated differently and have different implications

I'll talk about each one in turn

### Neutrino Production Modelling : Light Hadrons

Light hadron  $(\pi^{\pm}, K, \Lambda, \Sigma, \Xi)$ , production is described with different models / generators

• EPOS-LHC, SIBYLL, QGSJET, PYTHIA(forward)

LHCf photon and neutron spectra as a proxy for hadrons of interest

Generators have qualitative agreement with each other, but no generator fits all data very well

Uncertainty in the flux chosen to be their spread:

<u>Advantage</u>: Capture different physical effects present in the varied models

<u>Disadvantage</u>: Uncertainty driven by outlying generators

- Results in about 10% uncertainty on neutrinos from light hadrons
- Similar uncertainty to that obtained with the data-driven prescription obtained with PYTHIA(forward)



### Neutrino Production Modelling : Light Hadrons

Light hadrons can be generally long-lived

To model their production (and decay) we must propagate these long-lived particles down the **beam pipe** and validate against BDSIM propagation

The fast neutrino flux was first developed for the Run 2 LHC configuration. We update from Run 2  $\rightarrow$  Run 3 , Run 4

- $\frac{\sqrt{s}}{\text{TeV}} = 13.0 \rightarrow 13.6$ , 14.0
- $\theta_{1/2} = XXX \rightarrow 160 \ \mu rad \downarrow$ , 250  $\mu rad \rightarrow$
- + Updates to LHC infrastructure





### Neutrino Production Modelling : Heavy Hadrons

By measuring the neutrino flux, we can constrain forward charm production

• Implications for intrinsic charm + small-x gluon PDF

Only some generators include charm

- POWHEG, PYTHIA, SIBYLL, and DPMJET
- With the exception of DPMJET\*, agreement with LHCb D<sup>0</sup> spectra
- In the far-forward direction, charm production rates vary widely between generators

We use state-of-the-art QCD predictions for heavy hadron production. We use POWHEG+PYTHIA

• NLO in  $\alpha_s$  with small-x resummation at NLL accuracy. PDF includes LHCb fit (NNPDF3.1sx+LHCb)





#### **Neutrino Production Modelling : Heavy Hadrons**

Charm hadron decays dominate the rate for

•  $v_e$  for  $E_v \ge \text{TeV}$ .  $\approx 30\%$  of total rate

•  $v_{\tau}$  for all  $E_{\nu}$ (contribute  $\approx 5\%$  for  $v_{\mu}$ , LFU but  $\pi^{\pm}$  dominates)



Uncertainty modelled with factorization and resummation scale variations (see 2309.12793)

• Produces an upper and lower error band that is roughly a factor of 2 up and down

Now we know the incident neutrino flux and we must choose a cross-section



#### Neutrino Interaction Modelling – Cross section

For the TeV energy range, the neutrino cross section has not been measured and there are different predictions

In the 100 GeV + energy range, most interactions can mostly be described as DIS which can be expressed in terms of structure functions  $F_i(x, Q^2)$ 

$$\frac{d^2 \sigma_{\nu N}}{dx \, dy} = \frac{G_F^2 \, m_N \, E_\nu}{\pi \, (1 + m_W^2 / Q^2)^2} \cdot \left[ x y^2 \, F_1 + (1 - y) F_2 + x y \left( 1 - \frac{y}{2} \right) F_3 \right]$$

The Bodek-Yang description is used by GENIE and has been extensively tested for  $E_{\nu} \leq 100$  GeV. GENIE also includes non-DIS contributions

• However, it is built on obsolete PDF's, so it must be compared against other predictions of the neutrino cross-section

New descriptions of DIS based on NLO structure functions have been introduced, namely  $\rm NNSF\nu$  and CKMT+PCAC-NT, that build on modern PDF's .

• NNSF $\nu$  also provides an uncertainty estimate

For  $E_{\nu} > 100$  GeV after DIS cuts, we find general agreement with these more recent descriptions, within  $\approx 6\%$ 



Armed with a flux and crosssection, let's look at the event rate

## Neutrino Production Modelling: Result

Here the neutrinos from light and heavy hadrons, and their uncertainties are summed

- Top:  $\nu_e({\rm red})$  ,  $\nu_\mu({\rm blue})$  ,  $\nu_\tau$  (green) interacting spectra with errorbands at Run 3
- Middle: Uncertainty ratio w.r.t. baseline spectra
- Bottom: Fraction from charm for each flavor

Charm contribution dominates uncertainty

• pprox 50% for  $u_e$  , 10% for  $u_\mu$  , 100% for  $u_ au$ 

| FASER $\nu$ at Run 3  |                               |                                 | FASER $\nu$ at Run 4   |                               |                                 |  |  |
|-----------------------|-------------------------------|---------------------------------|------------------------|-------------------------------|---------------------------------|--|--|
| $\nu_e + \bar{\nu}_e$ | $\nu_{\mu} + \bar{\nu}_{\mu}$ | $\nu_{\tau} + \bar{\nu}_{\tau}$ | $\nu_e + \bar{\nu}_e$  | $ u_{\mu} + \bar{\nu}_{\mu} $ | $\nu_{\tau} + \bar{\nu}_{\tau}$ |  |  |
| $1675^{+911}_{-372}$  | $8507^{+992}_{-962}$          | $28^{+48}_{-12}$                | $4919^{+2748}_{-1141}$ | $24553^{+2568}_{-3219}$       | $91^{+163}_{-41}$               |  |  |

How does the spectra break down for different hadron species?



#### Neutrino Production Modelling: Hadron species

Binned interacting spectra in terms of parent hadron with statistical errorbars  $\sqrt{N}$  for full **Run 3** at FASERv

Enough statistics to probe forward hadron production



#### Neutrino Production Modelling: Hadron species

#### Similar result for Run 4, with slight differences due to location of detector w.r.t. line of sight



#### Neutrino Production Modelling: Hadron species

- Binned interacting spectra in terms of parent hadron with statistical errorbars  $\sqrt{N}$  for full Run 3 at FASER $\nu$
- Enough statistics to probe forward hadron production
- Similar result for Run 4, with slight differences due to location of detector w.r.t. line of sight
- We can also use **FASER** to detect  $v_{\mu}$  which doesn't rely on the emulsion readout



#### Neutrino Production Modelling: Spatial Distribution

- More information by studying the spatial distribution which gives information on parent hadron
- Top: (x , y)
- Bottom: (x ,  $E_{\nu}$ )
- In general,  $v_{\tau}$  is the least collimated,  $v_{\mu}$  is the most.
- Radial bins give information on parent hadron
- For all flavors high energy neutrinos are collimated on LOS





#### Summary

Neutrinos are present in all forward physics analyses, either as a signal or a background

We update the fast neutrino flux simulation for the Run 3 and expected Run 4 conditions

We collect light+heavy hadron production treatments, cross-section and their uncertainties to produce interacting neutrino spectra

This work will serve as the basis for upcoming FASER analyses, and can be







Thank you!



#### DPMJET



- DPMJET predicts an order of magnitude more neutrinos from charm
- DPMJET uses massless charm quarks and may also overestimate charm content of proton
- Never validated for charm production and should not be used

#### LHCf Spectra



#### Full table

| Generators    |               | FASER $\nu$ at Run 3  |                              |                                 | FASER $\nu$ at Run 4   |                              |                                 |
|---------------|---------------|-----------------------|------------------------------|---------------------------------|------------------------|------------------------------|---------------------------------|
| light hadrons | charm hadrons | $\nu_e + \bar{\nu}_e$ | $ u_{\mu} + \bar{ u}_{\mu} $ | $\nu_{\tau} + \bar{\nu}_{\tau}$ | $\nu_e + \bar{\nu}_e$  | $ u_{\mu} + \bar{ u}_{\mu} $ | $\nu_{\tau} + \bar{\nu}_{\tau}$ |
| EPOS-LHC      | _             | 1149                  | 7996                         | _                               | 3382                   | 23054                        | _                               |
| SIBYLL 2.3d   | _             | 1126                  | 7261                         | _                               | 3404                   | 21532                        | _                               |
| QGSJET 2.04   | _             | 1181                  | 8126                         | _                               | 3379                   | 22501                        | _                               |
| PYTHIAforward | _             | 1008                  | 7418                         | _                               | 2925                   | 20508                        | _                               |
| _             | POWHEG $Max$  | 1405                  | 1373                         | 76                              | 4264                   | 4068                         | 255                             |
| _             | POWHEG        | 527                   | 511                          | 28                              | 1537                   | 1499                         | 91                              |
| _             | POWHEG Min    | 294                   | 284                          | 16                              | 853                    | 826                          | 51                              |
| Combination   |               | $1675^{+911}_{-372}$  | $8507^{+992}_{-962}$         | $28^{+48}_{-12}$                | $4919^{+2748}_{-1141}$ | $24553^{+2568}_{-3219}$      | $91^{+163}_{-41}$               |