Neutrino Rate Predictions For FASER (and the FPF) 2402.13318

Max Fieg + FASER collaboration

FPF7

Neutrinos are one physicist's treasure, and another's garbage that must be taken out…

Neutrinos as a signal

- $\sigma_{\nu N}$ measurements
- forward hadron production
- DIS measurements to constrain PDF's
- BSM properties of neutrinos

Neutrinos as a background

- Dark photons
- ALPS
- Mili-charged particles

Bottom Line:

Neutrinos are involved in all forward physics analyses, so we study their **production, interaction,** and their **uncertainties** in detail for **Run 3 , Run 4/HL** measurements

One Slide Summary

1) Update the fast neutrino flux simulation for Run 3 and Run 4 configurations

2) Produce different predictions for neutrino production from light and heavy hadron decays and their uncertainties

 \sqrt{s} , magnets+LHC, $\theta_{1/2}$

Flux<sub>v
$$
\alpha
$$</sub> $\pm \delta_{\alpha}$
 $(\pi^{\pm}, K, ...)$ + $(D, \Lambda_c, ...)$

3) Compare different predictions for the CC DIS cross section and their uncertainties

 $\sigma_{\nu_{\alpha}N}(CC)\pm\delta^2$

One Slide Summary

1) Update the fast neutrino flux simulation for Run 3 and Run 4 configurations

2) Produce different predictions for neutrino production from light and heavy hadron decays and their uncertainties

3) Compare different predictions for the CC DIS cross section and their uncertainties

, magnets+LHC , $\theta_{1/2}$

Flux<sub>v
$$
\alpha
$$</sub> $\pm \delta_{\alpha}$
 $(\pi^{\pm}, K, ...) + (D, \Lambda_c, ...)$

 $\sigma_{\nu_{\alpha}N}(CC) \pm \delta$

Neutrino CC rate predictions for upcoming FASER analyses. Improves the simulation for future FPF measurements. Also serves as a review of a lot of great work that's recently been done.

Quick Review

FASER is a decay volume experiment equipped with muon vetos, trackers and a calorimeter and is designed to search for the decays of BSM LLP's

• Discovered the first collider neutrinos

 $FASERv$ is a high-density tungsten target, interleaved with emulsion for high spatial resolution tracking

Larger upgrades FASER2, FASERv2 proposed for the FPF

Quick Review

FASER is a decay volume experiment equipped with muon vetos, trackers and a calorimeter and is designed to search for the decays of BSM LLP's

• Discovered the first collider neutrinos

 $FASERv$ is a high-density tungsten target, interleaved with emulsion for high spatial resolution tracking

Neutrino Production Modelling

- Neutrinos are dominantly produced from hadron decay with 2 components:
- 1. Light hadrons: π^{\pm} , K, ...
	- Modelled phenomenologically
	- Can be long-lived
	- v_e , v_μ
- 2. Heavy hadrons: D , D_s , Λ_c ,...
	- Can be treated with pQCD, with some caveats
	- Prompt decays
	- Only source of v_{τ}

Light and heavy hadrons are treated differently and have different implications

I'll talk about each one in turn

}

Neutrino Production Modelling : Light Hadrons

Light hadron (π^\pm , K , Λ , Σ , Ξ), production is described with different models / generators

• **EPOS-LHC** , SIBYLL , QGSJET , PYTHIA(forward)

LHCf photon and neutron spectra as a proxy for hadrons of interest

Generators have qualitative agreement with each other, but no generator fits all data very well

Uncertainty in the flux chosen to be their spread:

Advantage: Capture different physical effects present in the varied models

Disadvantage: Uncertainty driven by outlying generators

- Results in about 10% uncertainty on neutrinos from light hadrons
- Similar uncertainty to that obtained with the data-driven prescription obtained with PYTHIA(forward)

Neutrino Production Modelling : Light Hadrons

Light hadrons can be generally long-lived

To model their production (and decay) we must propagate these long-lived particles down the **beam pipe** and validate against BDSIM propagation

The fast neutrino flux was first developed for the Run 2 LHC configuration. We update from Run $2 \rightarrow$ Run 3, Run 4

- $\cdot \frac{\sqrt{s}}{s}$ TeV $= 13.0 \rightarrow 13.6$, 14.0
- $\theta_{1/2} = XXX \rightarrow 160 \ \mu \text{rad}$ ↓, 250 μrad →
- + Updates to LHC infrastructure

Neutrino Production Modelling : Heavy Hadrons

By measuring the neutrino flux, we can constrain forward charm production

• Implications for intrinsic charm + small-x gluon PDF

Only some generators include charm

- POWHEG, PYTHIA, SIBYLL, and DPMJET
- With the exception of DPMJET*, agreement with LHCb $D^{\hspace{0.02cm} 0}$ spectra
- In the far-forward direction, charm production rates vary widely between generators

We use state-of-the-art QCD predictions for heavy hadron production. We use POWHEG+PYTHIA

• NLO in α_s with small-x resummation at NLL accuracy. PDF includes LHCb fit (NNPDF3.1sx+LHCb)

Neutrino Production Modelling : Heavy Hadrons

Charm hadron decays dominate the rate for

• v_e for $\rm E_{\nu} \ge TeV$. ${\approx}30\%$ of total rate

• v_τ for all E_ν

(contribute $\approx 5\%$ for ν_μ , LFU but π^\pm dominates)

Uncertainty modelled with factorization and resummation scale variations (see 2309.12793)

• Produces an upper and lower error band that is roughly a factor of 2 up and down

Now we know the incident neutrino flux and we must choose a cross-section

Neutrino Interaction Modelling – Cross section

For the TeV energy range, the neutrino cross section has not been measured and there are different predictions

In the 100 GeV + energy range, most interactions can mostly be described as DIS which can be expressed in terms of structure functions $F_i(x,Q^2)$

$$
\frac{d^2 \sigma_{\nu N}}{dx \, dy} = \frac{G_F^2 m_N E_\nu}{\pi (1 + m_W^2 / Q^2)^2} \cdot [xy^2 F_1 + (1 - y)F_2 + xy \left(1 - \frac{y}{2}\right) F_3]
$$

The Bodek-Yang description is used by GENIE and has been extensively tested for $\,E_{\nu} \leq 100$ GeV. GENIE also includes non-DIS contributions

• However, it is built on obsolete PDF's, so it must be compared against other predictions of the neutrino cross-section

New descriptions of DIS based on NLO structure functions have been introduced, namely $\operatorname{NNSF}\nu$ and CKMT+PCAC-NT, that build on modern PDF's .

• NNSF_v also provides an uncertainty estimate

For $E_v > 100$ GeV after DIS cuts, we find general agreement with these more recent descriptions, within $\approx 6\%$

Armed with a flux and crosssection, let's look at the event rate

Neutrino Production Modelling: Result

Here the neutrinos from light and heavy hadrons, and their uncertainties are summed

- Top: v_e (red) , v_μ (blue) , v_τ (green) interacting spectra with errorbands at Run 3
- Middle: Uncertainty ratio w.r.t. baseline spectra
- Bottom: Fraction from charm for each flavor

Charm contribution dominates uncertainty

 $\bullet \, \approx 50\%$ for ν_e , 10% for ν_μ , 100% for ν_τ

How does the spectra break down for different hadron species?

Neutrino Production Modelling: Hadron species

Binned interacting spectra in terms of parent hadron with statistical errorbars \sqrt{N} for full **Run 3** at FASER

Enough statistics to probe forward hadron production

Neutrino Production Modelling: Hadron species

Similar result for **Run 4**, with slight differences due to location of detector w.r.t. line of sight

Neutrino Production Modelling: Hadron species

- Binned interacting spectra in terms of parent hadron with statistical errorbars \sqrt{N} for full Run 3 at FASER
- Enough statistics to probe forward hadron production
- Similar result for Run 4, with slight differences due to location of detector w.r.t. line of sight
- We can also use **FASER** to detect v_{μ} which doesn't rely on the emulsion readout

Neutrino Production Modelling: Spatial Distribution

- More information by studying the spatial distribution which gives information on parent hadron
- Top: (x, y)
- Bottom: (x, E_v)
- In general, ν_{τ} is the least collimated, ν_{μ} is the most.
- Radial bins give information on parent hadron
- For all flavors high energy neutrinos are collimated on LOS

Summary

Neutrinos are present in all forward physics analyses, either as a signal or a background

We update the fast neutrino flux simulation for the Run 3 and expected Run 4 conditions

We collect light+heavy hadron production treatments, cross-section and their uncertainties to produce interacting neutrino spectra

This work will serve as the basis for upcoming FASER analyses, and can be

Thank you!

DPMJET

- DPMJET predicts an order of magnitude more neutrinos from charm
- DPMJET uses massless charm quarks and may also overestimate charm content of proton
- Never validated for charm production and should not be used

LHCf Spectra

Full table

