

Modelling high energy neutrino scattering at the FPF

Eva Groenendijk

Based on work in progress together with Valentina Schutze Sanchez, Peter Krack, Melissa van Beekveld and Juan Rojo

The need for a more precise event generator

- Possibility to detect high energy neutrinos originating from the LHC
- Make theory framework around FPF more complete
- Current event generators LO+obsolete parton shower (PYTHIA6)
- We want NLO+PYTHIA8 for more precise cross sections at high energies
- Small-x PDF constraints

Starting point: POWHEG(electrons)

A POWHEG generator for deep inelastic scattering

Andrea Banfi, Silvia Ferrario Ravasio, Barbara Jäger, Alexander Karlberg, Felix Reichenbach, Giulia Zanderighi

We present a new event generator for the simulation of both neutral- and charged-current deep inelastic scattering (DIS) at next-to-leading order in QCD matched to parton showers using the POWHEG method. Our implementation builds on the existing POWHEG BOX framework originally designed for hadron-hadron collisions, supplemented by considerable extensions to account for the genuinely different kinematics inherent to lepton-hadron collisions. In particular, we present new momentum mappings that conserve the special kinematics found in DIS, which we use to modify the POWHEG BOX implementation of the Frixione-Kunszt-Signer subtraction mechanism. We compare our predictions to fixed-order and resummed predictions, as well as to data from the HERA ep collider. Finally we study a few representative distributions for the upcoming Electron lon Collider.

arXiv:2309.02127

arXiv:2309.02127

POWHEG(electrons)

- Event generation from PDFs
- Delta function as incoming electron 'PDF'
- Accounts for ISR & FSR
- LO+PS & NLO+PS matching with PYTHIA8
- Computes theory errors from variation around renormalisation & factorisation scale
- EIC

POWHEG(neutrinos)

- Use charged current vertex
- Neutrino in initial state
- Neutrino flux as a neutrino 'PDF' \rightarrow LHAPDF grid with

Cross sections for final state kinematics

- E_l, E_h, θ_l
- FASER acceptance cuts
- NLO QCD correction is important for final state kinematics

Outlook

- So NLO correction should be accounted for
- Account for neutrino fluxes
- Validate POWHEG(neutrinos) with FASER or SND@LHC data
- Make the code public
- Use it! E.g. constraining small-x PDFs, looking at deviations from fixed-order QCD

