Neutrino flux constraints wth the low-v method

7th FPF meeting, CERN, 29nd February 2024 **C. Wilkinson**, A. Garcia Soto

Motivation/background

- "Standard candles" isolate a region of phase-space with a known cross section as a way to help break flux/cross-section degeneracies
- The "low- ν " method is often discussed as a standard candle for few-GeV accelerator neutrino experiments
- Previous work showed it is not a good option for precision few-GeV experiments like DUNE: EPJC **82**, 808 (2022), arXiv:2203.11821
- But, followed this up by thinking about the potential use at higher energies \rightarrow the FPF: PRD **109**, 033010 (2024), arXiv:2310.0652
- This is all very high-level, without proper reconstruction etc, and should be used to motivate a full study in future

The low-v method [1,2]

- Comes from the observation that if $q_0/E_v << 1$, the cross section is approximately constant with E_v
- The rate as a function of E_{ν} gives access to the flux shape
- Very closely linked to the "low-y" ($y = q_0/E_v$) method [2]

[1] S. R. Mishra in Workshop on Hadron Structure Functions and Parton Distributions, 84, p84. World Scientific, 1990
[2] R. Belusevic and D. Rein Phys. Rev. D 38 (1988) 2753–2757

The low-v method [1,2]

- Comes from the observation that if $q_0/E_v << 1$, the cross section is approximately constant with E_v
- The rate as a function of E_{ν} gives access to the flux shape
- Very closely linked to the "low-y" ($y = q_0/E_v$) method [2]

[1] S. R. Mishra in Workshop on Hadron Structure Functions and Parton Distributions, 84, p84. World Scientific, 1990
[2] R. Belusevic and D. Rein Phys. Rev. D 38 (1988) 2753–2757

Low-v method requirements

The method works if:

1) There is a low-q₀ region with a constant cross section in E_{ν}

2) It can be selected without significant model dependence

3) It provides a useful number of events

History of the low-v method

- Widely known/used in accelerator neutrino community:
 - **CCFR**, $30 \le E_v \le 360$ GeV, 1985–1988*
 - **NuTeV**, $30 \le E_v \le 360$ GeV, 1996–1997*
 - **NOMAD**, $3 \le E_v \le 100$ GeV, 1995–1998*
 - MINOS(+), 2 ≤ E_v ≤ 10 GeV, 2005–2016*
 - **MINERvA**, $2 \le E_v \le 10$ GeV, 2009–2019*
- Discussed for use in current/future precision experiments:
 - **MicroBooNE**, $0.3 \le E_{\nu} \le 2$ GeV, 2015–2021*
 - **DUNE**, $1 \le E_v \le 5$ GeV, 2030's

*all dates indicate data-taking periods

Aside: cross-section models

Low energy (LE): EPJST 230 (2021) 24, arXiv:2106.09381

- Developed for few-GeV accelerator neutrino community
- DIS from Bodek-Yang model \rightarrow tuned for low-Q²
- LO structure functions, use GRV98LO PDFs
- Contributions from heavy quarks not included

High energy (HE): JCAP 09 025 (2020), arXiv:2004.04756

- Developed for UHE, high-Q² regime (neutrino telescopes)
- Use new NLO PDFs \rightarrow NLO structure functions
- Include heavy quark contributions
- Non-DIS interactions are neglected

Low-v method requirements

The method works if:

1) There is a low-q₀ region with a constant cross section in E_{ν}

2) It can be selected without significant model dependence

3) It provides a useful number of events

Is the low-q₀ cross section flat in E_{ν} ?

- For v_{μ} , $q_0 \le 20$ GeV relatively constant with E_{ν} (CCFR* used $E_{had} \le 20$ GeV to define low- ν at $30 \le E_{\nu} \le 360$ GeV)
- More restricted for $\overline{\nu}_{\mu}$, within a few-% up to $q_0 \le 10$ GeV

*W. G. Seligman. PhD thesis, Nevis Labs, Columbia U., 1997

Is the low-q₀ cross section flat in E_{ν} ?

$$\frac{\mathrm{d}\sigma}{\mathrm{d}q_{0}} = \frac{\mathrm{G}_{\mathrm{F}}M}{\pi} \int_{0} \left(F_{2} - \frac{q_{0}}{E_{\nu}} \left[F_{2} \mp xF_{3} \right] + \frac{q_{0}}{2E_{\nu}^{2}} \left[\frac{Mx(1 - R_{\mathrm{L}})}{1 + R_{\mathrm{L}}} + \frac{q_{0}^{2}}{2E_{\nu}^{2}} \left[\frac{F_{2}}{1 + R_{\mathrm{L}}} \mp xF_{3} \right] \right) \mathrm{d}x$$

11

hadrons

Is the low-q₀ cross section flat in E_{ν} ?

Define low-v region as:

- ν_{μ} CC [5 \leq] $q_0 \leq$ 20 GeV
- $\overline{\nu}_{\mu}$ CC [5 ≤] $q_0 \le 10$ GeV

Is the low-q₀ cross section flat in E_{ν} ?

- Low-q₀ sample cross sections \approx linear with E_{ν}
- Few-% non-linearity at low-q₀ for v_{μ} similar for LE and HE
- Larger $\approx 10\%$ non-linearity for $\overline{\nu}_{\mu}$, larger LE/HE differences
- Non-DIS contributes $\approx 10\%$ ($\approx 25\%$) of ν_{μ} ($\overline{\nu}_{\mu}$) low-q₀ region

Low-v method requirements

The method works if:

- 1) There is a low-q₀ region with a constant cross section in E_{ν}
- 2) It can be selected without significant model dependence
- 3) It provides a useful number of events

Detector smearing

	$FASER\nu 2$
Fiducial mass	20 t
Det. cross-section	$0.5{ imes}0.5~{ m m}$
Target material	^{184}W
Muon resolution	5%
Charged had. res.	50%
Charged had. threshold	$p \geq 300 { m MeV}$
EM shower res.	50%
Minimum track cut	5
Invisible particles	$n,ar{n},K_{ m L}^0, u_X$

$$E_{\text{had}}^{\text{reco}} = \left(\sum_{i=p,\bar{p}} E_{\text{kin}}^{i}\right) + \left(\sum_{i=\pi^{\pm},K^{\pm},\gamma,l^{\pm},K_{\text{S}}^{0}} E_{\text{total}}^{i}\right)$$

- Assumptions follow FPF design docs

 → details in PRD 109, 033010 (2024)
- $E_{had} \approx q_0$ for central population
- Low *E*_{had} tail from unobserved particles

Can a low- q_0 sample be experimentally selected?

- Cutting on E_{had} introduces a highq₀ tail to the sample
- Necessarily E_{ν} dependent to some extent
- Depends more on hadronization model (e.g., unobservable E_{loss})
- More pronounced for $\overline{\nu}_{\mu}$ ($\approx 10\%$) than ν_{μ} ($\approx 1\%$)

Can a low-q₀ sample be experimentally selected?

- Low- E_{had} sample cross sections \approx linear with E_{ν}
- Slightly less linear for both v_{μ} and \overline{v}_{μ} than true-q₀ case
- Larger LE/HE differences: few-% for v_{μ} , $\approx 10\%$ for $\overline{v_{\mu}}$

Can a low-q₀ sample be experimentally selected?

- Low- E_{had} sample cross sections \approx linear with E_{ν}
- Slightly less linear for both v_{μ} and \overline{v}_{μ} than true-q₀ case
- Larger LE/HE differences: few-% for v_{μ} , $\approx 10\%$ for $\overline{v_{\mu}}$

Low-v method requirements

The method works if:

- 1) There is a low-q₀ region with a constant cross section in E_{ν}
- 2) It can be selected without significant model dependence
- 3) It provides a useful number of events

Low-v sample event rate

- For a 3000 fb⁻¹ exposure, FASERv2 low-v samples have $O(10,000) v_{\mu}$ and $O(1,000) \bar{v}_{\mu}$ events
- Relationship between reco. and true E_{ν} is fairly diagonal (dominated by E_{μ})

$$E_{\nu}^{\rm reco} = E_{\mu} + E_{\rm had}^{\rm reco}$$

Low-v method requirements

The method works if:

1) There is a low- q_0 region with a constant cross section in E_v

2) It can be selected without significant model dependence

3) It provides a useful number of events

- 0.1 TeV

— 1 TeV

— 8 TeV

 σ (cm²/nucleon/TeV/1 ×10⁻³⁵)

0.5

 10^{-3}

 10^{-2}

— 0.2 TeV

— 2 TeV

— 10 TeV

 10^{-1}

---- 0.5 TeV

— 5 TeV

 v_{u} -¹⁸⁴W

¹q₀ (TeV)

FASERv2 ν_{μ} flux constraint

- Template LLH fit: vary normalizations of templates that correspond to a region of true E_{ν} , binned in reco E_{ν}
- Best fit template normalizations and uncertainties give the flux constraint in true E_{ν} bins

FASERv2 ν_{μ} flux constraint

- The fitted flux shape has a 10-20% bin-to-bin uncertainties (although bins are correlated)
- The fitted flux is corrected for E_{ν} -dependence, the model correction uncertainty shows the full LE/HE difference

- Much larger model correction uncertainty ≈stat. uncertainty
- Potentially still useful as a cross-check given the huge differences between production models
- Possible for a more advanced analysis to attempt to constrain E_{ν} -dependence with data

FASERv2: hadron production model selection

- "True" flux uses SIBYLL v2.3d for both light and charmed hadron production
- Black (gray) lines use EPOSLHC (DPMJET-III) for light (charmed) hadron production

All fluxes from: PRD104, 113008 (2021) SIBYLL v2.3d: PRD102, 063002 (2020) EPOSLHC: PRC92, 034906 (2015) DPMJET-III: arXiv:hep-ph/0012252

Conclusions

- The low-v method may be very useful for FPF physics by breaking production and interaction degeneracies
- For 3000 fb⁻¹, FASERv2 can make ν_{μ} flux shape measurements with 5–10% bin-to-bin uncertainties
- Situation is less clear for $\overline{\nu}_{\mu}$, other flavors not possible
- Similar conclusions for FLArE10 and FLArE100 in PRD 109, 033010 (2024)
- This is all very high-level, without proper reconstruction etc, and should be used to motivate a full study in future

Backup

FPF event rate

- Neutrino flux predictions* for three FPF detector options Later I'll only show FASERv2 (but all are in the paper)
- Shown for 3000 fb⁻¹ HL-LHC run
- Cross section \approx linear with E_{ν}

*PRD104, 113008 (2021)

LE/HE model differences

- LE non-DIS dominates $q_0 \le 3$ GeV, large for $q_0 \le 5$ GeV
- HE tune DIS qualitatively similar to LE, but turn-on differs
- General trends for both models_similar for all energies, and for ν_{μ}

Define low-v region as:

- ν_{μ} CC [5 \leq] $q_0 \leq$ 20 GeV
- $\overline{\nu}_{\mu}$ CC [5 ≤] q₀ ≤ 10 GeV

Smeared cross section

- Charged hadron track cut suppresses the resonance peak Low- E_{had} sample cross sections ~linear with E_v
- Slightly less linear for both v_{μ} and \overline{v}_{μ} than low-q₀ case
- Larger LE/HE differences: few-% for v_{μ} , ~10% for \overline{v}_{μ}

FASERv2 ν_{μ} flux constraint

- The fitted flux shape has a 10-20% bin-to-bin uncertainties (although bins are strongly correlated)
- The fitted flux is corrected for E_{ν} -dependence, the model correction uncertainty shows the full LE/HE difference

Example: CCFR analysis

Seligman. PhD thesis,

א. ס.

- CCFR use low- ν for $30 \le E_{\nu} \le 360 \text{ GeV}$
- E_{HAD} is their q_0 proxy, and their low- ν sample is $E_{HAD} \le 20$ GeV
- To estimate the q_0/E_v correction, they exclude $E_{HAD} \le 4$ GeV because resonant events don't have the correct scaling

Neutrino-electron elastic scattering

- The known, but small, cross section can be used to constrain the flux. ~5000 LAr ND events/year
- A powerful additional tool for achieving DUNE's sensitivities, and resolving flux ↔ cross section ambiguities

$$E_{\nu} = \frac{E_e}{1 - \frac{E_e(1 - \cos\theta)}{m}}$$

- Strong normalization contraint due to known XSEC
- Weak shape constraint due to detector smearing and beam divergence