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Motivation/background

● “Standard candles” isolate a region of phase-space with a known 
cross section as a way to help break flux/cross-section degeneracies

● The “low-ν” method is often discussed as a standard candle for few-
GeV accelerator neutrino experiments

● Previous work showed it is not a good option for precision few-GeV 
experiments like DUNE: EPJC 82, 808 (2022), arXiv:2203.11821

● But, followed this up by thinking about the potential use at higher 
energies → the FPF: PRD 109, 033010 (2024), arXiv:2310.0652

● This is all very high-level, without proper reconstruction etc, and 
should be used to motivate a full study in future
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The low-ν method [1,2]

● Comes from the observation that if q0/Eν << 1, the cross 
section is approximately constant with Eν

● The rate as a function of Eν gives access to the flux shape

● Very closely linked to the “low-y” (y = q0/Eν) method [2]

[1] S. R. Mishra in Workshop on Hadron Structure Functions and 
Parton Distributions, 84 , p84. World Scientific, 1990
[2] R. Belusevic and D. Rein Phys. Rev. D 38 (1988) 2753–2757

DIS
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The method works if:

1) There is a low-q0 region with a constant cross section in Eν

2) It can be selected without significant model dependence

3) It provides a useful number of events

DIS

Low-ν method requirements
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● Widely known/used in accelerator neutrino community:
● CCFR, 30 ≤ Eν ≤ 360 GeV, 1985–1988*

● NuTeV, 30 ≤ Eν ≤ 360 GeV, 1996–1997*

● NOMAD, 3 ≤ Eν ≤ 100 GeV, 1995–1998*

● MINOS(+), 2 ≤ Eν ≤ 10 GeV, 2005–2016*

● MINERvA, 2 ≤ Eν ≤ 10 GeV, 2009–2019*

● Discussed for use in current/future precision experiments:
● MicroBooNE, 0.3 ≤ Eν ≤ 2 GeV, 2015–2021*
● DUNE, 1 ≤ Eν ≤ 5 GeV, 2030’s
● ...

History of the low-ν method

*all dates indicate 
data-taking periods
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Aside: cross-section models

High energy (HE): JCAP 09 025 (2020), arXiv:2004.04756
● Developed for UHE, high-Q2 regime (neutrino telescopes)
● Use new NLO PDFs → NLO structure functions
● Include heavy quark contributions
● Non-DIS interactions are neglected

Low energy (LE): EPJST 230 (2021) 24, arXiv:2106.09381 
● Developed for few-GeV accelerator neutrino community
● DIS from Bodek-Yang model → tuned for low-Q2

● LO structure functions, use GRV98LO PDFs
● Contributions from heavy quarks not included
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LE νμ-184W LE νμ-184W 

Is the low-q0 cross section flat in Eν?

● For νμ, q0 ≤ 20 GeV relatively constant with Eν 

(CCFR* used Ehad ≤ 20 GeV to define low-ν at 30 ≤ Eν ≤ 360 GeV)

● More restricted for νμ, within a few-% up to q0 ≤ 10 GeV 

*W. G. Seligman. PhD thesis, Nevis Labs, Columbia U., 1997
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DIS

Resonant 
contribution

Faster fall off 
in XSEC for νμ

Is the low-q0 cross section flat in Eν?

LE νμ-184W LE νμ-184W 



12

Is the low-q0 cross section flat in Eν?

Define low-ν region as:

● νμ CC [5 ≤] q0 ≤ 20 GeV

● νμ CC [5 ≤] q0 ≤ 10 GeV

LE νμ-184W LE νμ-184W 
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νμ-184W νμ-184W 

● Low-q0 sample cross sections ≈linear with Eν

● Few-% non-linearity at low-q0 for νμ, similar for LE and HE
● Larger ≈10% non-linearity for νμ, larger LE/HE differences
● Non-DIS contributes ≈10% (≈25%) of νμ (νμ) low-q0 region

Is the low-q0 cross section flat in Eν?
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The method works if:
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DIS
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Detector smearing
νμ-184W
Eν = 10 TeV

νμ-184W
Eν = 10 TeV 

● Assumptions follow FPF design docs   
→details in PRD 109, 033010 (2024)

● Ehad ≈ q0 for central population
● Low Ehad tail from unobserved particles
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νμ-184W
Eν = 10 TeV

νμ-184W
Eν = 10 TeV 

● Cutting on Ehad introduces a high-
q0 tail to the sample

● Necessarily Eν dependent to 
some extent

● Depends more on hadronization 
model (e.g., unobservable Eloss)

● More pronounced for νμ (≈10%) 
than νμ (≈1%)

Can a low-q0 sample be experimentally selected?
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νμ-184W νμ-184W 

● Low-Ehad sample cross sections ≈linear with Eν

● Slightly less linear for both νμ and νμ than true-q0 case

● Larger LE/HE differences: few-% for νμ, ≈10% for νμ

Can a low-q0 sample be experimentally selected?
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The method works if:

1) There is a low-q0 region with a constant cross section in Eν

2) It can be selected without significant model dependence

3) It provides a useful number of events

DIS

Low-ν method requirements
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Low-ν sample event rate

● For a 3000 fb-1 exposure, FASERν2 low-ν samples have 
O(10,000) νμ and O(1,000) νμ events

● Relationship between reco. and true Eν is fairly diagonal 
(dominated by Eμ)
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The method works if:

1) There is a low-q0 region with a           
    constant cross section in Eν

3) It provides a useful number   
    of events

νμ-184W 

νμ-184W 

2) It can be selected without        
    significant model dependence

Low-ν method requirements
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FASERv2 νμ flux constraint

● Simple analysis to check utility

● Template LLH fit: vary normalizations of templates that 
correspond to a region of true Eν, binned in reco Eν

● Best fit template normalizations and uncertainties give the 
flux constraint in true Eν bins

νμ CC(5 ≤ Ehad ≤ 20 GeV) 
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● The fitted flux shape has a 10-20% bin-to-bin uncertainties 
(although bins are correlated) 

● The fitted flux is corrected for Eν-dependence, the model 
correction uncertainty shows the full LE/HE difference

FASERv2 νμ flux constraint
νμ CC(5 ≤ Ehad ≤ 20 GeV) 
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What about νμ? (still FASERv2)

● Much larger model correction uncertainty ≈stat. uncertainty
● Potentially still useful as a cross-check given the huge 

differences between production models
● Possible for a more advanced analysis to attempt to 

constrain Eν-dependence with data

νμ CC(5 ≤ Ehad ≤ 20 GeV) νμ CC(5 ≤ Ehad ≤ 10 GeV) 
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FASERv2: hadron production model selection

● “True” flux uses SIBYLL v2.3d for both 
light and charmed hadron production

● Black (gray) lines use EPOSLHC 
(DPMJET-III) for light (charmed) 
hadron production

νμ CC(5 ≤ Ehad ≤ 20 GeV) 

All fluxes from: PRD104, 113008 (2021)
SIBYLL v2.3d: PRD102, 063002 (2020)
EPOSLHC: PRC92, 034906 (2015)
DPMJET-III: arXiv:hep-ph/0012252
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Conclusions

● The low-ν method may be very useful for FPF physics 
by breaking production and interaction degeneracies

● For 3000 fb-1, FASERv2 can make νμ flux shape 
measurements with 5–10% bin-to-bin uncertainties

● Situation is less clear for νμ, other flavors not possible

● Similar conclusions for FLArE10 and FLArE100 in PRD 
109, 033010 (2024) 

● This is all very high-level, without proper reconstruction 
etc, and should be used to motivate a full study in future
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Backup
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FPF event rate

● Neutrino flux predictions* for three FPF detector options
Later I’ll only show FASERν2 (but all are in the paper)

● Shown for 3000 fb-1 HL-LHC run

● Cross section ≈linear with Eν

*PRD104, 113008 (2021)

SIBYLL+SIBYLL LE model
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LE/HE model differences

1 TeV νμ-184W ● LE non-DIS dominates q0 ≤ 3 
GeV, large for q0 ≤ 5 GeV

● HE tune DIS qualitatively similar 
to LE, but turn-on differs

● General trends for both models 
similar for all energies, and for νμ

Define low-ν region as:

● νμ CC [5 ≤] q0 ≤ 20 GeV

● νμ CC [5 ≤] q0 ≤ 10 GeV
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Smeared cross section

νμ-184W νμ-184W 

● Charged hadron track cut suppresses the resonance peak 
Low-Ehad sample cross sections ~linear with Eν

● Slightly less linear for both νμ and νμ than low-q0 case

● Larger LE/HE differences: few-% for νμ, ~10% for νμ
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● The fitted flux shape has a 10-20% bin-to-bin uncertainties 
(although bins are strongly correlated) 

● The fitted flux is corrected for Eν-dependence, the model 
correction uncertainty shows the full LE/HE difference

Correlation matrix

FASERv2 νμ flux constraint
νμ CC(5 ≤ Ehad ≤ 20 GeV) 
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Example: CCFR analysis

● CCFR use low-ν for 30 ≤ Eν ≤ 360 GeV

● EHAD is their q0 proxy, and their low-ν sample 
is EHAD ≤ 20 GeV

● To estimate the q0/Eν correction, they 
exclude EHAD ≤ 4 GeV because resonant 
events don’t have the correct scaling
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Neutrino-electron elastic scattering
● The known, but small, cross section can be used to constrain 

the flux. ~5000 LAr ND events/year

● A powerful additional tool for achieving DUNE’s sensitivities, 
and resolving flux↔cross section ambiguities

● Strong normalization contraint 
due to known XSEC

● Weak shape constraint due to 
detector smearing and beam 
divergence

5 years, 30 t LAr FV, 1.2 MW beam
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