Neutrino flux constraints wth the low-*v* method

7th FPF meeting, CERN, 29nd February 2024 **C. Wilkinson**, A. Garcia Soto

Motivation/background

- "Standard candles" isolate a region of phase-space with a known cross section as a way to help break flux/cross-section degeneracies
- The "low-v" method is often discussed as a standard candle for few-GeV accelerator neutrino experiments
- Previous work showed it is not a good option for precision few-GeV experiments like DUNE: EPJC **82**, 808 (2022), arXiv:2203.11821
- But, followed this up by thinking about the potential use at higher energies → the FPF: PRD **109**, 033010 (2024), arXiv:2310.0652
- This is all very high-level, without proper reconstruction etc, and should be used to motivate a full study in future

The low-ν method [1,2]

- Comes from the observation that if $q_0/E_v \ll 1$, the cross section is approximately constant with E_v
- The rate as a function of E_{ν} gives access to the flux *shape*
- Very closely linked to the "low-y" ($y = q_0/E_v$) method [2]

[1] S. R. Mishra in Workshop on Hadron Structure Functions and Parton Distributions, 84 , p84. World Scientific, 1990 [2] R. Belusevic and D. Rein Phys. Rev. D 38 (1988) 2753–2757

The low-ν method [1,2]

- Comes from the observation that if $q_0/E_v \ll 1$, the cross section is approximately constant with E_v
- The rate as a function of E_{ν} gives access to the flux *shape*
- Very closely linked to the "low-y" ($y = q_0/E_v$) method [2]

[1] S. R. Mishra in Workshop on Hadron Structure Functions and Parton Distributions, 84 , p84. World Scientific, 1990 [2] R. Belusevic and D. Rein Phys. Rev. D 38 (1988) 2753–2757

Low-ν method requirements

The method works if:

1) There is a low-q₀ region with a constant cross section in E_v

2) It can be selected without significant model dependence

3) It provides a useful number of events

History of the low-ν method

- Widely known/used in accelerator neutrino community:
	- **CCFR**, $30 \le E_v \le 360$ GeV, $1985-1988$ ^{*}
	- **NuTeV**, $30 \le E_v \le 360$ GeV, $1996 1997$ ^{*}
	- **NOMAD**, $3 \le E_v \le 100$ GeV, $1995-1998^*$
	- **MINOS(+)**, $2 \le E_v \le 10$ GeV, 2005–2016*
	- MINERVA, $2 \le E_v \le 10$ GeV, 2009–2019*

*all dates indicate data-taking periods

- Discussed for use in current/future precision experiments:
	- MicroBooNE, $0.3 \le E_v \le 2$ GeV, 2015–2021*
	- **DUNE**, $1 \le E_v \le 5$ GeV, 2030's

Aside: cross-section models

Low energy (LE): EPJST 230 (2021) 24, arXiv:2106.09381

- Developed for few-GeV accelerator neutrino community
- DIS from Bodek-Yang model \rightarrow tuned for low-Q²
- LO structure functions, use GRV98LO PDFs
- Contributions from heavy quarks not included

High energy (HE): JCAP **09** 025 (2020), arXiv:2004.04756

- Developed for UHE, high-O² regime (neutrino telescopes)
- Use new NLO PDFs \rightarrow NLO structure functions
- Include heavy quark contributions
- Non-DIS interactions are neglected

Low-ν method requirements

The method works if:

1) There is a low-q₀ region with a constant cross section in E_v

2) It can be selected without significant model dependence

3) It provides a useful number of events

Is the low-q₀ cross section flat in E_{ν} ?

• For v_{μ} , $q_0 \leq 20$ GeV relatively constant with E_{ν}

(CCFR^{*} used $E_{\text{had}} \le 20$ GeV to define low-v at $30 \le E_v \le 360$ GeV)

• More restricted for \overline{v}_{μ} , within a few-% up to $q_0 \leq 10$ GeV

*W. G. Seligman. PhD thesis, Nevis Labs, Columbia U., 1997

Is the low-q₀ cross section flat in E_v ?

$$
\frac{d\omega}{dq_0} = \frac{G_{F}^{1/V}}{\pi} \int_0^{\pi} \left(F_2 - \frac{q_0}{E_{\nu}} \left[F_2 \mp x F_3 \right] + \frac{q_0}{2E_{\nu}^2} \left[\frac{Wx(1 - R_{\nu})}{1 + R_{\nu}} F_2 \right] + \frac{q_0^2}{2E_{\nu}^2} \left[\frac{F_2}{1 + R_{\nu}} \mp x F_3 \right] \right) dx
$$

hadrons

Is the low-q₀ cross section flat in E_{ν} ?

Define low-ν region as:

- v_μ CC [5 \leq] $q_0 \leq 20$ GeV
- \overline{v}_{μ} CC [5 \leq] $q_0 \leq 10$ GeV

Is the low-q₀ cross section flat in E_{ν} ?

- Low-q₀ sample cross sections ≈linear with E_v
- Few-% non-linearity at low-q₀ for v_{μ} similar for LE and HE
- Larger \approx 10% non-linearity for v_{μ} , larger LE/HE differences
- Non-DIS contributes ≈10% (≈25%) of v_μ (\bar{v}_μ) low-q₀ region

Low-ν method requirements

The method works if:

- 1) There is a low-q₀ region with a constant cross section in E_{ν}
- 2) It can be selected without significant model dependence
- 3) It provides a useful number of events

Detector smearing

$$
E_{\text{had}}^{\text{reco}} = \left(\sum_{i=p,\bar{p}} E_{\text{kin}}^i\right) + \left(\sum_{i=\pi^\pm, K^\pm, \gamma, l^\pm, K_\text{S}^0} E_{\text{total}}^i\right)
$$

- Assumptions follow FPF design docs →*details in PRD 109, 033010 (2024)*
- $E_{\text{had}} \approx q_0$ for central population
- Low E_{had} tail from unobserved particles

Can a low- q_0 sample be experimentally selected?

- Cutting on E_{had} introduces a high q_0 tail to the sample
- Necessarily E_{ν} dependent to *some* extent
- Depends more on hadronization model (e.g., unobservable *E*loss)
- More pronounced for v_μ (\approx 10%) than v_{μ} (≈1%)

Can a low- q_0 sample be experimentally selected?

- Low-*E*had sample cross sections ≈linear with *E*^ν
- Slightly less linear for both v_μ and v_μ than true-q₀ case
- Larger LE/HE differences: few-% for v_{μ} , \approx 10% for v_{μ}

Can a low- q_0 sample be experimentally selected?

- Low-*E*had sample cross sections ≈linear with *E*^ν
- Slightly less linear for both v_μ and v_μ than true-q₀ case
- Larger LE/HE differences: few-% for v_{μ} , \approx 10% for v_{μ}

Low-ν method requirements

The method works if:

1) There is a low-q₀ region with a constant cross section in E_{ν}

2) It can be selected without significant model dependence

3) It provides a useful number of events

Low-ν sample event rate

- For a 3000 fb⁻¹ exposure, FASERv2 low-v samples have $O(10,000)$ $v_μ$ and $O(1,000)$ $v_μ$ events
- Relationship between reco. and true E_{ν} is fairly diagonal (dominated by *E*μ)

$$
E_{\rm V}^{\rm reco} = E_{\rm \mu} + E_{\rm had}^{\rm reco}
$$

Low-ν method requirements

The method works if:

1) There is a low- q_0 region with a constant cross section in *E*^ν

2) It can be selected without significant model dependence

3) It provides a useful number of events

 10^{-2}

 -0.1 TeV

 -1 TeV

 -8 TeV

σ (cm²/nucleon/TeV/1 \times 10⁻³⁵)

 0.5

 10^{-3}

 -0.2 TeV

 -2 TeV

 -10 TeV

 10^{-1}

 V_{μ} - 184 W

 $\frac{1}{q}$ (TeV)¹⁰

 -0.5 TeV

 -5 TeV

$FASERv2$ v_{μ} flux constraint

- Template LLH fit: vary normalizations of templates that correspond to a region of true *E*ν, binned in reco *E*^ν
- Best fit template normalizations and uncertainties give the flux constraint in true *E*ν bins

$FASERv2$ v_{μ} flux constraint

- The fitted flux shape has a 10-20% bin-to-bin uncertainties (although bins are correlated)
- The fitted flux is corrected for E_{ν} -dependence, the model correction uncertainty shows the full LE/HE difference

- Much larger model correction uncertainty \approx stat. uncertainty
- Potentially still useful as a cross-check given the huge differences between production models
- *Possible* for a more advanced analysis to attempt to constrain *E*ν-dependence with data

FASERv2: hadron production model selection

- "True" flux uses SIBYLL v2.3d for both light and charmed hadron production
- Black (gray) lines use EPOSLHC (DPMJET-III) for light (charmed) hadron production

All fluxes from: PRD104, 113008 (2021) SIBYLL v2.3d: PRD102, 063002 (2020) EPOSLHC: PRC92, 034906 (2015) DPMJET-III: arXiv:hep-ph/0012252

Conclusions

- The low-y method may be very useful for FPF physics by breaking production and interaction degeneracies
- For 3000 fb⁻¹, FASERv2 can make v_{μ} flux shape measurements with 5–10% bin-to-bin uncertainties
- Situation is less clear for v_{μ} , other flavors not possible
- Similar conclusions for FLArE10 and FLArE100 in PRD **109**, 033010 (2024)
- This is all very high-level, without proper reconstruction etc, and should be used to motivate a full study in future

Backup

FPF event rate

- Neutrino flux predictions* for three FPF detector options *Later I'll only show FASERν2 (but all are in the paper)*
- Shown for 3000 fb⁻¹ HL-LHC run
- Cross section ≈linear with E_{ν}

*PRD104, 113008 (2021)

LE/HE model differences

- LE non-DIS dominates $q_0 \leq 3$ GeV, large for $q_0 \leq 5$ GeV
- HE tune DIS qualitatively similar to LE, but turn-on differs
- General trends for both models similar for all energies, and for v_{μ}

Define low-ν region as:

- v_μ CC [5 \leq] $q_0 \leq 20$ GeV
- \cdot v_{μ} CC [5 \leq] $q_0 \leq 10$ GeV

Smeared cross section

- Charged hadron track cut suppresses the resonance peak Low-*E*had sample cross sections ~linear with *E*^ν
- Slightly less linear for both v_μ and v_μ than low-q₀ case
- Larger LE/HE differences: few-% for v_{μ} , ~10% for v_{μ}

FASERv2 v_{μ} flux constraint

- The fitted flux shape has a 10-20% bin-to-bin uncertainties (although bins are strongly correlated)
- The fitted flux is corrected for E_{ν} -dependence, the model correction uncertainty shows the full LE/HE difference

Example: CCFR analysis

 $W. G.$

 Ξ $\mathbf \sigma$

그

e

- CCFR use low-v for $30 \le E_v \le 360$ GeV
- E_{HAD} is their q_0 proxy, and their low-v sample is E_{HAD} ≤ 20 GeV
- To estimate the q_0/E_v correction, they exclude $E_{HAD} \leq 4$ GeV because resonant events don't have the correct scaling

Neutrino-electron elastic scattering

- The known, but small, cross section can be used to constrain the flux. ~5000 LAr ND events/year
- A powerful additional tool for achieving DUNE's sensitivities, and resolving flux \leftrightarrow cross section ambiguities

$$
E_\nu = \frac{E_e}{1-\frac{E_e(1-\cos\theta)}{m}}
$$

- Strong normalization contraint due to known XSEC
- Weak shape constraint due to detector smearing and beam divergence