Revising the phenomenology of axion-like particles coupled to fermions

Giovani Dalla Valle Garcia, Felix Kahlhoefer, Maksym Ovchynnikov, Andrii Zaporozhchenko

February 29, 2024

Based on [2310.03524]

<ロト <四ト <注入 <注下 <注下 <

Introduction

LLPs: problems with phenomenology description

- Our understanding of the LLP phenomenology at colliders is far from being complete
- Examples of the unclosed questions:
 - 1. Proton bremsstrahlung [2306.15800]
 - 2. Production via mixing with neutral mesons [2201.05170]
 - 3. Hadronic decay width around $\Lambda_{\rm QCD}$ and its matching with perturbative width [1806.07759]
 - 4. ...
- Uncertainties in these processes dominate the total uncertainty in the event rate prediction: orders of magnitude!
- Revisions of these questions are ongoing

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 2/16

・ロト ・同ト ・ヨト ・ヨト

Introduction

ALPs coupled to fermions: prominent example I

Pattern	PBC classification
$C_{BB} \neq 0, \ C_{F,GG,WW} = 0$	BC9
Universal C_F , $C_{BB,GG,WW} = 0$	BC10
$C_{GG} \neq 0, \ C_{F,BB,WW} = 0$	BC11

– Lagrangian of generic ALPs:

$$\mathcal{L} = \frac{a}{F} \left(C_{GG} \frac{\alpha_s}{4\pi} G^c_{\mu\nu} \tilde{G}^{\mu\nu,c} + C_{WW} \frac{\alpha_W}{4\pi} W^{\mu\nu,c} \tilde{W}^c_{\mu\nu} + \frac{C_{BB}}{4\pi} \frac{\alpha_B}{4\pi} B_{\mu\nu} \tilde{B}^{\mu\nu} \right) + \frac{\partial^{\mu} a}{F} \sum_F \bar{\Psi}_F C_F \gamma_{\mu} \Psi_F$$
(1)

– ALPs universally coupled to fermions – $\mathbf{BC10}$ model:

$$\mathcal{L}_{\text{eff}} = \frac{\partial_{\mu}a}{F} \left(C_{\ell} \sum_{\ell} \bar{\ell} \gamma^{\mu} \gamma_{5} \ell + C_{q} \sum_{q} \bar{q} \gamma^{\mu} \gamma_{5} q \right)$$
(2)

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 3/16

- 32

イロト イヨト イヨト イヨト

Introduction

ALPs coupled to fermions: prominent example II

- Commonly adopted BC10 phenomenology [1901.09966]:
 - Missing production channels
 - Missing hadronic decays (at all!)
- These features significantly affect constraints from past experiments and sensitivities of future experiments

The ALP phenomenology has to be revised

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 4/16

RG flow and effective interactions I

- The model (2) is defined at some scale $\Lambda \simeq F > \Lambda_{\rm EW}$
- To describe the GeV scale ALP phenomenology, one needs to know the RG flow down to the scale $\mu \sim m_a$ (see [2110.10698])
- Parameters redefinition:

$$c_f(\mu) \equiv \frac{C_f(\mu)}{C_f(\Lambda)}, \ f \equiv \frac{F}{C_F(\Lambda)}$$

Fermions have different weak isospin \Rightarrow breakdown of the fermion universality

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 5/16

RG flow and effective interactions II

Figure: $C_{bs}(\mu = 2 \text{ GeV})$. f = 1 TeV in the plot.

– The FCNC couplings strongly depend on Λ , the other interactions are much less sensitive

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions Feb

February 29, 2024 6/16

ALP production I

- Production channel 1: mixing with light mesons $m^0 = \pi^0, \eta, \eta'$
- Estimate of the production cross-section:

$$\sigma_{a,\text{mixing}} \approx |\theta_{m^0 a}|^2 \sigma_{m_0}, \qquad (3)$$

where θ_{m^0a} is the mixing angle Poor approximation but follow common description

- Mixing with π^0 strongly depends on the scale Λ , since $\theta_{\pi^0 a} \propto c_u - c_d$

Figure: Solid: $\Lambda = \Lambda_{\rm EW}$. Dashed: $\Lambda = 1$ TeV

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 7/16

- **Production channel 2**: decays $B \to a + X_{s/d}, K \to a + \pi$
- Originates from the FCNC couplings
- Previously unaccounted channels $B \rightarrow a + K_1/K_0^*/K_2^*/K^*(1410)$ increase the total production rate by a factor of 4

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 8/16

ALP production III

- Production channel 3: gluon fusion
- Hard process: $g + g \rightarrow a$
- Huge theoretical uncertainties:
 - 1. $\sigma_{\text{fusion,hard}} \propto \alpha_s^2(m_a) \Rightarrow \text{large}$ dependence on scale variations
 - 2. The production of the ALP is forward \Rightarrow needs to know PDFs at very small x

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 9/16

ALP production IV

Figure: Solid: $\Lambda = 1$ TeV. Dashed: $\Lambda = \Lambda_{\rm EW}$

- Consider three facilities where ALPs may be produced: FNAL, SPS, LHC

Different yields of B mesons + Λ dependence \Rightarrow various production channels may dominate at various facilities

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions February 29, 2024

イロト イポト イヨト イヨ

10/16

ALP decays I

- Non-hadronic decays: into a pair of leptons/photons
- Hadronic ALP decays: for $m_a \gg \Lambda_{\rm QCD}$ – perturbative QCD description, for $m_a \lesssim 1-2$ GeV – description in terms exclusive decays into mesons

Leptonic decays dominate below 1 GeV, hadronic decays - for higher masses

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 11/16

ALP decays II

- Hadronic width below $m_a \approx 2$ GeV: ChPT + phenomenological interactions with S, V, and T mesons determined by symmetry arguments and to fit data (see, e.g., 2110.10691)

– Matching mass between perturbative QCD and ChPT: $m_a \approx 2.2 \text{ GeV}$

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 12/16

- 32

(Some) past experiments (in preparation) I

Fix the model: $\Lambda = 1$ TeV

- Exclusions from CHARM: surprisingly, became worse than computed previously using PBC phenomenology *Reasons: wrong setup?*
- NuCal: covers masses $0.4 < m_a < 1 \text{ GeV}$
- NA62 with LS3 data: may cover larger parameter space

イロト イヨト イヨト

- Domain of large couplings: covered by searches for $B \to K\mu\mu$ at LHCb Sensitivity of BD experiments computed using SensCalc

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 13/16

ALPs at future experiments (in preparation) I

- What is the impact of the revised phenomenology on the sensitivity of FASER?
- New production channels, Γ_{decay} gets larger at 1 GeV \Rightarrow better sensitivity to small couplings and worse to large couplings
- Difference in N_{events} would be orders in magnitude

– Domain of masses up to the threshold $m_B - m_\pi$: inaccessible due to parametric smallness of $c\tau_a$

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions Feb

February 29, 2024 14/16

ALPs at future experiments (in preparation) II

- Upper bound of the sensitivity $g_{Y,\text{upper bound}} \propto \sqrt{p_{a,\text{max}}/z_{\text{to decay volume}}}$
- Experiments having larger ratio $p_a/z_{\rm to \ decay \ volume}$: SHiP, LHCb-Downstream, FACET

Maksym Ovchynnikov

Revising the phenomenology of axion-like particles coupled to fermions

February 29, 2024 15/16

- PBC description of ALPs universally coupled to fermions: missing important production channels and hadronic decays
- The revised phenomenology leads to a huge change in the parameter space of the model constrained by past experiments/accessible by future experiments
- We release Mathematica notebook allowing to produce tabulated widths/production probabilities/matrix elements. The phenomenology has been implemented in SensCalc
- This is a small step ahead to revise the commonly used descriptions of LLPs' phenomenology