Probing LFV, PV ALPs at the Forward Physics Facility and a Future Muon Collider

Roman Marcarelli

B. Batell, H. Davoudiasl, E. Neil, S. Trojanowski arXiv:2403.????

7th Annual FPF Workshop

Image Credit: DALL·E 3 Prompt: LFV, PV ALPs at the Forward Physics Facility and a Future Muon Collider

• LFV: Lepton-Flavor Violating

- LFV: Lepton-Flavor Violating
 - Known to exist beyond SM

- LFV: Lepton-Flavor Violating
 - Known to exist beyond SM
 - This talk: focus on charged LFV

- LFV: Lepton-Flavor Violating
 - Known to exist beyond SM
 - This talk: focus on charged LFV

- LFV: Lepton-Flavor Violating
 - Known to exist beyond SM
 - This talk: focus on charged LFV
- PV: Parity-Violating

- LFV: Lepton-Flavor Violating
 - Known to exist beyond SM
 - This talk: focus on charged LFV
- PV: Parity-Violating
- ALP: Axion-like Particle

- LFV: Lepton-Flavor Violating
 - Known to exist beyond SM
 - This talk: focus on charged LFV
- PV: Parity-Violating
- ALP: Axion-like Particle
 - Pseudo-Nambu Goldstone modes of a spontaneously broken approximate global symmetry.
 - For our purposes: has derivative coupling to fermions
 - QCD Axion, Pion

$$\sim \left(\frac{eg^2}{32\pi^2}\frac{m_\nu}{m_W}\right)^2$$

• ALP Effective Lagrangian:

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} a\right)^2 - \frac{1}{2} m_a^2 a^2 + \frac{\partial_{\mu} a}{\Lambda} \sum_{f,f'} \bar{f} \gamma^{\mu} \left(V_{ff'} - A_{ff'} \gamma^5\right) f' + \cdots$$

• ALP Effective Lagrangian:

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} a \right)^{2} - \frac{1}{2} m_{a}^{2} a^{2} + \frac{\partial_{\mu} a}{\Lambda} \sum_{f,f'} \bar{f} \gamma^{\mu} \left(V_{ff'} - A_{ff'} \gamma^{5} \right) f' + \cdots$$

• Lepton sector:

$$\mathcal{L}_{\ell} = \frac{\partial_{\mu} a}{\Lambda} \sum_{\ell,\ell'} \overline{\ell} \gamma^{\mu} (V_{\ell\ell'} - A_{\ell\ell'} \gamma^5) \ell'$$

• ALP Effective Lagrangian:

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} a\right)^{2} - \frac{1}{2} m_{a}^{2} a^{2} + \frac{\partial_{\mu} a}{\Lambda} \sum_{f,f'} \bar{f} \gamma^{\mu} \left(V_{ff'} - A_{ff'} \gamma^{5}\right) f' + \cdots$$

• Lepton sector (equations of motion):

$$\mathcal{L}_{\ell} = \frac{a}{\Lambda} \sum_{\ell,\ell'} \overline{\ell} \left((m_{\ell} - m_{\ell'}) V_{\ell\ell'} - (m_{\ell} + m_{\ell'}) A_{\ell\ell'} \gamma^5 \right) \ell'$$

• ALP Effective Lagrangian:

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} a \right)^{2} - \frac{1}{2} m_{a}^{2} a^{2} + \frac{\partial_{\mu} a}{\Lambda} \sum_{f,f'} \bar{f} \gamma^{\mu} \left(V_{ff'} - A_{ff'} \gamma^{5} \right) f' + \cdots$$

• Lepton sector (equations of motion):

$$\mathcal{L}_{\ell} = \frac{a}{\Lambda} \sum_{\ell,\ell'} \overline{\ell} \left((m_{\ell} - m_{\ell'}) V_{\ell\ell'} - (m_{\ell} + m_{\ell'}) A_{\ell\ell'} \gamma^5 \right) \ell'$$

- Two take-aways:
 - Vector current coupling vanishes for $\ell = \ell' \ (\ell \to \ell e^{-iV_{\ell\ell}a/\Lambda})$
 - Mass hierarchy in coupling: focus on τ

• ALP- τ sector:

$$\mathcal{L}_{\tau\ell} \approx \frac{\partial_{\mu} a}{\Lambda} \left[C_{\tau\tau} \, \bar{\tau} \gamma^{\mu} \gamma^5 \tau + \sum_{\ell=e,\mu} \, \bar{\ell} \gamma^{\mu} (V_{\ell\tau} - A_{\ell\tau} \gamma^5) \, \tau \right] + H.c.$$

• ALP- τ sector:

$$\mathcal{L}_{\tau\ell} = \frac{\partial_{\mu}a}{\Lambda} \left[C_{\tau\tau} \, \bar{\tau} \gamma^{\mu} \gamma^{5} \tau + \sum_{\ell=e,\mu} \, \bar{\ell} \gamma^{\mu} C_{\tau\ell} (\sin \theta_{\tau\ell} - \gamma^{5} \cos \theta_{\tau\ell}) \, \tau \right] + H.c.$$

• ALP- τ sector:

$$\mathcal{L}_{\tau\ell} = \frac{\partial_{\mu}a}{\Lambda} \left[C_{\tau\tau} \, \bar{\tau} \gamma^{\mu} \gamma^{5} \tau + \sum_{\ell=e,\mu} \, \bar{\ell} \gamma^{\mu} C_{\tau\ell} (\sin \theta_{\tau\ell} - \gamma^{5} \cos \theta_{\tau\ell}) \, \tau \right] + H.c.$$

• Focus on $C_{\tau\mu}$

• ALP- τ sector:

$$\mathcal{L}_{\tau\ell} = \frac{\partial_{\mu}a}{\Lambda} \left[C_{\tau\tau} \, \bar{\tau} \gamma^{\mu} \gamma^{5} \tau + \sum_{\ell=e,\mu} \, \bar{\ell} \gamma^{\mu} C_{\tau\ell} (\sin \theta_{\tau\ell} - \gamma^{5} \cos \theta_{\tau\ell}) \, \tau \right] + H.c.$$

- Focus on $C_{\tau\mu}$
- ALP- "dark-fermion" sector:

$$\mathcal{L}_{\chi} = \frac{\partial_{\mu}a}{\Lambda} C_{\chi\chi}\bar{\chi}\gamma^{\mu}\gamma^{5}\chi$$

- Under the right conditions, χ can be a candidate for dark matter
- If $m_a > m_\tau + m_\ell$, $2m_\chi$, can decay $a \to \ell \tau$, $a \to \chi \chi$

Contribution to $(g - 2)_{\mu}$

- Currently: Outstanding anomaly between theory and experiment for $(g-2)_{\mu}$
 - Fermilab + Brookhaven:

 $\Delta a_{\mu} = (249 \pm 48) \times 10^{-11} \, (5.1\sigma)$

• In limit $m_{ au} \gg m_{\ell}$

$$\Delta a_{\ell} = -\frac{m_{\ell}^2 C_{\ell\tau}^2}{16\pi^2 \Lambda^2} \left[f(m_a^2/m_{\tau}^2) + \frac{m_{\tau}}{m_{\ell}} g(m_a^2/m_{\tau}^2) \cos 2\theta \right]$$

• Positive for $\theta \gtrsim \frac{\pi}{4} + \frac{m_{\ell}}{m_{\tau}}$

$$f(x) = \frac{2x^2 \log x}{(x-1)^3} + \frac{1-3x}{(x-1)^2}$$
$$g(x) = \frac{2x^2(2x-1)\log x}{(x-1)^4} - \frac{5-19x+20x^2}{3(x-1)^2}$$

• Flavor-violating decays

- Flavor-violating decays
 - Weak for $m_a > m_{ au}$
 - Dependent on on-diagonal coupling

- Flavor-violating decays
 - Weak for $m_a > m_{ au}$
 - Dependent on on-diagonal coupling
- Higgs decays

(arXiv:2105.05866, H. Davoudiasl, R.M., N. Miesch, E. Neil)

- Flavor-violating decays
 - Weak for $m_a > m_{ au}$
 - Dependent on on-diagonal coupling
- Higgs decays (arXiv:2105.05866, H. Davoudiasl, **R.M.**, N. Miesch, E. Neil)
- Electromagnetic Lepton-Nucleus Collisions
 - Production dependent only on $C_{\ell\tau}$
 - Limits depend on ALP decay
 - For O(few) GeV ALP, need O(TeV) energies in ion rest frame.

- Flavor-violating decays
 - Weak for $m_a > m_{ au}$
 - Dependent on on-diagonal coupling
- Higgs decays (arXiv:2105.05866, H. Davoudiasl, R.M., N. Miesch, E. Neil)
- Electromagnetic Lepton-Nucleus Collisions
 - Production dependent only on $C_{\ell\tau}$
 - Limits depend on ALP decay
 - For O(few) GeV ALP, need O(TeV) energies in ion rest frame.
 - C_{eτ}: Electron-Ion Collider at Brookhaven arXiv:2112.04513 (H. Davoudiasl, R. M., E. Neil) arXiv:2402.17821 (H. Davoudiasl, R. M., E. Neil)

- Flavor-violating decays
 - Weak for $m_a > m_{ au}$
 - Dependent on on-diagonal coupling
- Higgs decays (arXiv:2105.05866, H. Davoudiasl, R.M., N. Miesch, E. Neil)
- Electromagnetic Lepton-Nucleus Collisions
 - Production dependent only on $C_{\ell\tau}$
 - Limits depend on ALP decay
 - For O(few) GeV ALP, need O(TeV) energies in ion rest frame.
 - C_{eτ}: Electron-Ion Collider at Brookhaven arXiv:2112.04513 (H. Davoudiasl, R. M., E. Neil) arXiv:2402.17821 (H. Davoudiasl, R. M., E. Neil)
 - *C*_{μτ}:

- Flavor-violating decays
 - Weak for $m_a > m_{ au}$
 - Dependent on on-diagonal coupling
- Higgs decays (arXiv:2105.05866, H. Davoudiasl, R.M., N. Miesch, E. Neil)
- Electromagnetic Lepton-Nucleus Collisions
 - Production dependent only on $C_{\ell\tau}$
 - Limits depend on ALP decay
 - For O(few) GeV ALP, need O(TeV) energies in ion rest frame.
 - C_{eτ}: Electron-Ion Collider at Brookhaven arXiv:2112.04513 (H. Davoudiasl, R. M., E. Neil) arXiv:2402.17821 (H. Davoudiasl, R. M., E. Neil)
 - *C*_{μτ}:
 - 3 TeV Muon Collider

- Flavor-violating decays
 - Weak for $m_a > m_{ au}$
 - Dependent on on-diagonal coupling
- Higgs decays (arXiv:2105.05866, H. Davoudiasl, R.M., N. Miesch, E. Neil)
- Electromagnetic Lepton-Nucleus Collisions
 - Production dependent only on $C_{\ell\tau}$
 - Limits depend on ALP decay
 - For O(few) GeV ALP, need O(TeV) energies in ion rest frame.
 - C_{eτ}: Electron-Ion Collider at Brookhaven arXiv:2112.04513 (H. Davoudiasl, R. M., E. Neil) arXiv:2402.17821 (H. Davoudiasl, R. M., E. Neil)
 - *C*_{μτ}:
 - 3 TeV Muon Collider
 - Forward Physics Facility

- FLUKA predictions:
 - Muons from ATLAS during HL-LHC
 - Energies from 10 GeV 5 TeV

- FLUKA predictions:
 - Muons from ATLAS during HL-LHC
 - Energies from 10 GeV 5 TeV
- FASER 2
 - Transverse size $1m \times 3m$ (~ few $\times 10^{14}$ muons)
 - Thin lead plates
- FASER ν 2
 - Transverse size of $40 \text{ cm} \times 40 \text{ cm}$ (~ few $\times 10^{12}$ muons)
 - 20 tons of Tungsten (W) interspersed w/ emulsion layers

- $\mu^-W \rightarrow \tau^-Wa$, $(a \rightarrow \mu^+\tau^-)$
 - No charge ID for f.s. leptons
 - SM background ($\mu^-W \rightarrow \mu^-W\tau^+\tau^-$)
- $\mu^- W \rightarrow \tau^- Wa$, $(a \rightarrow \chi \bar{\chi})$
 - Require $\tau^- \rightarrow 3h$ or $\tau^- \rightarrow \mu^- \nu \nu$ + 2mm τ^- track in emulsion detector

5000

Limits from FASER ν 2

- Assuming $a \rightarrow \chi \overline{\chi}$ is dominant
- Disclaimer: To be competitive, requires $C_{\tau\tau} < 10^{-2}$
- Probes explanation to muon
 g 2 anomaly in narrow range
 of angles
- Can be used as a pilot study for similar study at a Muon Collider

Looking Forward to a 3 TeV Muon Collider

- Consider muon thin target experiment
 - 2 cm lead (Pb) plate on beam axis
 - Assume $N_{\mu} = 10^{20}$ muons on target
- Signal
 - $\mu^- Pb \rightarrow \tau^- Pb a$, $(a \rightarrow \mu^+ \tau^-)$
 - Almost no background with charge ID
 - $\mu^- Pb \rightarrow \tau^- Pb a$, $(a \rightarrow \chi \chi)$
 - Almost no SM background
 - Require $\tau^- \rightarrow 3h$
- Explores large parameter space of couplings including all explanations to Δa_{μ} for $m_{\tau} < m_a < 30$ GeV

Takeaways/Concluding Remarks

- Forward-Physics Facility:
 - Flux of muons with up to 5 TeV of energy
 - Probes small region of LFV ALP parameter space
 - Potential improvements from more tau identification or higher-than-expected muon luminosity
 - Detector-environment similar to that of a Muon Collider fixed target experiment, can be used as a pilot study
 - More generically, could test viability of physics searches and inform experimental design for a future Muon Collider
- 3 TeV Muon Collider
 - Can fully probe model's explanation to muon g-2
 - Offers competitive constraints even in presence of on-diagonal couplings
 - Massive undertaking... hopefully we will see it in our lifetimes

Questions?

Phase/angle parameterization

• ALP- τ sector:

$$\mathcal{L}_{\tau\ell} = \frac{\partial_{\mu}a}{\Lambda} \left[C_{\tau\tau} \, \bar{\tau} \gamma^{\mu} \gamma^{5} \tau + \sum_{\ell=e,\mu} \, \bar{\ell} \gamma^{\mu} (V_{\ell\tau} - A_{\ell\tau} \gamma^{5}) \, \tau \right] + H.c.$$

• Useful to rewrite off-diagonal terms (assuming CP symmetry)

$$\overline{\ell}\gamma^{\mu}(V - A\gamma^5)\tau \longrightarrow C\overline{\ell}\gamma^{\mu}(\sin\theta - \cos\theta\gamma^5)\tau$$

where:

$$C = \sqrt{|A|^2 + |V|^2}$$
 Magnitude of coupling

 $\theta = \tan^{-1}(|V|/|A|)$ Parity-violating angle

Dark Matter

- If $m_{\tau} < m_{\chi} < 2m_a$, dark matter can annihilate to SM through $\chi \bar{\chi} \to a \to \ell^{\pm} \tau^{\mp}$
- Thermal averaged annihilation cross-section:

$$\langle \sigma v \rangle \sim \frac{C_{\ell\tau}^2 C_{\chi\chi}^2}{\Lambda^4} \frac{m_\tau^2 \left(4m_\chi^2 - m_\tau^2\right)^2}{\left(m_a^2 - 4m_\chi^2\right)^2} \sim 4.4 \times 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}$$

- Annihilation proceeds in *s*-wave
- If $m_{\chi} < 10$ GeV, constrained by CMB.
- Can still exist in an asymmetric dark matter scenario
- If $m_{\chi} > 2m_a$, dark matter mainly annihilates through $\chi \bar{\chi} \to aa$

$$\langle \sigma v \rangle \sim \frac{6}{x_{\rm f.o.}} \frac{C_{\chi\chi}^4}{24\pi} \frac{\left(m_{\chi}^2 - m_a^2\right)^2}{\left(2m_{\chi}^2 - m_a^2\right)^4} \left(1 - \frac{m_a^2}{m_{\chi}^2}\right)^{1/2}$$

• Annihilation proceeds in p-wave, no constraints from CMB

arXiv:2110.10698 (M. Bauer, M. Neubert, S. Renner, M. Schnubel, A. Thamm)

- Highly dependent on model parameters
 - As $C_{\ell\ell} \to 0$, $\tau \to \ell\gamma$ and , $\tau \to \ell\ell'$ very suppressed.
 - Weak for $m_a > m_{ au}$
- Additional limits from Higgs decays (see arXiv:2105.05866 (R.M., H. Davoudiasl, E. Neil, N. Miesch))
- Can one probe $C_{\tau\ell}$ independent of other couplings?

Explanation for Δa_e and Δa_μ

Production Process

- $\sigma \propto C_{\ell\tau}^2 Z^2 F(q^2)$
 - Production proportional only to off-diagonal coupling
 - Large enhancement from charge of nucleus
 - Suppressed for large $t = q^2$
 - To produce ALP of mass m_a , need $t = (m_a^2/2E_\ell)^2$
 - $F(q^2) = F_{\rm coh}(q^2) + F_{\rm incoh}(q^2)/Z$

Probing $C_{\tau e}$: Electron-Ion Collider (EIC)

- High-energy electron and heavy ion beams:
 - In lab frame: $E_e^{\text{lab}} = 18 \text{ GeV}$, $E_{\text{ion}}^{\text{lab}} = 110 \text{ GeV}/A$
 - In ion frame: $E_e^{\text{ion}} \approx 4 \text{ TeV}$
 - Luminosity of $\sim 3-15~{\rm fb^{-1}}$ per nucleon per month
- For clean detector environment, veto on nuclear breakup
 - cut off at $t = -q^2 = (0.1 \text{ GeV})^2$
 - Can produce ALPs up to mass $m_a = \sqrt{2E_e\sqrt{t_{\rm max}}} = 30~{\rm GeV}$
- ALP produced on-shell, consider decays $a \rightarrow e^+ \tau^-$
 - Look for LFV signal: identify e^+ and one τ^- , veto on e^-
 - Main background: Bethe-Heitler process with $\tau^+ \rightarrow e^+ \nu \bar{\nu}$, + loss of electron down the beam pipe.
 - Predicted ~ 400 background events, with $\sigma \sim 20$
 - Consider only $\tau \rightarrow 3h$ decays, assume efficiency $\epsilon_{\tau} = 1\%$ (arXiv:2207.10261).
 - Need to produce ~ 30 signal events for 90% confidence

 $C_{\tau e}$ limits from EIC

- EIC can probe $C_{\tau e}/\Lambda \sim O(1-10)/\text{TeV}$
- Competitive when $C_{\tau\tau}/\Lambda < 10^{-1} \, {\rm TeV^{-1}}$
- Can view as complementary constraint:
 - When $C_{\tau\tau}$ large, $C_{\tau e}$ constrained with LFV
 - When $C_{\tau\tau}$ small, $C_{\tau e}$ constrained through production at EIC

EIC and electron g - 2 anomalies

- EIC can probe near-chiral LFV explanations for either electron g 2 anomaly (assuming one remains)
- This analysis only considered $\epsilon_{\tau} \sim 1\%$ and no dedicated background mitigation. A more dedicated analysis could probe a wider range of couplings.
- Also would gain from $a \rightarrow \chi \chi$ signal

EIC in the m_a - θ plane explanation for $g_e - 2$

- EIC can probe near-chiral LFV explanations for either electron g 2 anomaly (assuming one remains)
- This analysis only considered $\epsilon_{\tau} \sim 1\%$ and no dedicated background mitigation. A more dedicated analysis could probe a wider range of couplings.
- Would gain more from $a \rightarrow \chi \chi$ signal

Probing $C_{\mu\tau}$: m_a - θ plane explanation for $g_{\mu} - 2$

- FASER ν 2 only probes light masses with angle $\theta \sim \pi/4 + m_{\mu}/m_{\tau}$
- Muon Collider probes entire parameter space

