Heavy Neutral Leptons without Prejudice

Based on NB, K. Deka and M. Losada arXiv:2311.18033, 2403.soon

7th Forward Physics Facility Meeting February 29 – March 1, 2024 CERN

Heavy Neutral Leptons (HNLs)

HNLs (N) can play a fundamental role in

- * neutrino masses
- * leptogenesis
- * dark matter

New free parameters:

- * mass m_N
- * Yukawa couplings y_{Ne} , $y_{N\mu}$, $y_{N\tau}$
- * mixing angles V_{Ne} , $V_{N\mu}$, $V_{N\tau}$

Heavy Neutral Leptons (HNLs)

Mixing angles and Yukawa couplings are typically related

* Type-I seesaw

$$|V_{N\alpha}|^2 \simeq \left(|y_{N\alpha}| \frac{v}{m_N}\right)^2$$

* Scotogenic

$$y_{N\alpha} = 0$$
 but $V_{N\alpha} \neq 0$

1. HNLs only couple to SM Higgs boson

- * Production through Higgs decays
- * Decays into 3-body final states $\Gamma(N \to \nu f \bar{f}) \propto y^2 \frac{m_f^2 m_N^5}{m_f^6}$

$$10^{-2}$$
 10^{-4}
 10^{-8}
 10^{-10}
 10^{0}
 10^{1}
 10^{2}
 10^{2}

 m_N [GeV]

$$\Gamma(h \to N
u) = rac{y^2}{8\pi} m_h \left[1 - \left(rac{m_N}{m_h} \right)^2 \right]^2$$
 $\Gamma(N \to
u f \bar{f}) \propto y^2 rac{m_f^2 m_N^5}{m^6}$

- * Production through Higgs decays
- * Decays into 3-body final states $\Gamma(N \to \nu f \bar{f}) \propto y^2 \frac{m_f^2 m_N^5}{m_f^6}$

$$\Gamma(h \to N
u) = rac{y^2}{8\pi} m_h \left[1 - \left(rac{m_N}{m_h} \right)^2 \right]^2$$
 $\Gamma(N \to
u f \bar{f}) \propto y^2 rac{m_f^2 m_N^5}{m_h^6}$

- * Production through Higgs decays
- * Decays into 3-body final states $\Gamma(N \to \nu f \bar{f}) \propto y^2 \frac{m_f^2 m_N^5}{m_f^6}$

$$\Gamma(h \to N
u) = rac{y^2}{8\pi} m_h \left[1 - \left(rac{m_N}{m_h} \right)^2 \right]^2$$
 $\Gamma(N \to
u f \bar{f}) \propto y^2 rac{m_f^2 m_N^5}{m_h^6}$

- * Production through Higgs decays
- * Decays into 3-body final states $\Gamma(N \to \nu f \bar{f}) \propto y^2 \frac{m_f^2 m_N^5}{m_f^6}$

$$\Gamma(h \to N \nu) = rac{y^2}{8\pi} m_h \left[1 - \left(rac{m_N}{m_h}
ight)^2 \right]^2$$
 $\Gamma(N \to \nu f \bar{f}) \propto y^2 \, rac{m_f^2 \, m_N^5}{m_h^6}$

HNLs @ Far Detectors

HNLs from Higgs decays

Higgs inclusive production
$$\sigma \simeq 59.1 \text{ pb at } \sqrt{s} = 14 \text{ TeV}$$
 $\mathcal{L} = 3 \text{ ab}^{-1}$

* **FASER-2** $\Delta = 10 \text{ m}, R = 1 \text{ m}$

Probability of HNL decay inside the detector

$$\mathcal{P} = \left[e^{-(L-\Delta)/d} - e^{-L/d} \right] \Theta \left[R - L \tan \theta \right]$$

$$d = c\tau \,\beta \,\gamma = c\tau \,\frac{|\vec{p}|}{m_N}$$

* MATHUSLA

HNLs @ Far Detectors

HNLs Complementarity

Nicolás BERNAL

11

2. HNLs independent Yukawas and Mixings

 $10^{-14} \frac{1}{10^{-10}}$

 $m_N = 2 \text{ GeV}$

* Production from Higgs

$$\Gamma(h \to N\nu) = \frac{y^2}{8\pi} m_h \left[1 - \left(\frac{m_N}{m_h} \right)^2 \right]^2$$

from gauge bosons

$$\Gamma(W^{\pm} \to N l_{\alpha}^{\pm}) \simeq \frac{e^2 V_{N\alpha}^2}{96\pi s_W^2} m_W \left[2 - 3 \left(\frac{m_N}{m_W} \right)^2 + \left(\frac{m_N}{m_W} \right)^6 \right],$$

$$\Gamma(Z \to N \nu) = \frac{e^2 V^2}{96\pi c_W^2 s_W^2} m_Z \left[2 - 3 \left(\frac{m_N}{m_Z} \right)^2 + \left(\frac{m_N}{m_Z} \right)^6 \right]$$

* 3-body decays through off-shell *Z*,*W* and *h*

 $c\tau = 1 \text{ mm}$ 10^{-6} 10^{-8} $c\tau = 1 \text{ m}$ 10^{-10} $c\tau = 480 \text{ m}$ 10^{-12} 10^{-14} 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2} 10^{-1}

 10^{-6}

 $m_N = 10 \text{ GeV}$

 10^{-4}

 10^{-2}

Nicolás BERNAL @ NYUAD

 10^{-10}

 $m_N = 2 \text{ GeV}$

 10^{-4}

 10^{-2}

* Production from Higgs

$$\Gamma(h \to N\nu) = \frac{y^2}{8\pi} m_h \left[1 - \left(\frac{m_N}{m_h} \right)^2 \right]^2$$

from gauge bosons

$$\Gamma(W^{\pm} \to N l_{\alpha}^{\pm}) \simeq \frac{e^2 V_{N\alpha}^2}{96\pi s_W^2} m_W \left[2 - 3 \left(\frac{m_N}{m_W} \right)^2 + \left(\frac{m_N}{m_W} \right)^6 \right],$$

$$\Gamma(Z \to N \nu) = \frac{e^2 V^2}{96\pi c_W^2 s_W^2} m_Z \left[2 - 3 \left(\frac{m_N}{m_Z} \right)^2 + \left(\frac{m_N}{m_Z} \right)^6 \right]$$

* 3-body decays through off-shell *Z*,*W* and *h*

 $m_N = 10 \text{ GeV}$ to = 1 mm to = 10 GeV to = 10 GeV

 10^{-6}

Nicolás BERNAL @ NYUAD

HNLs @ FASER-2

100%

Conclusions & Outlook

- HNLs are cool (neutrino masses, leptogenesis, dark matter)
- The relation between Yukawa couplings and mixing angles is unknown
- Model-independent search: Yukawas and mixings as free parameters
- Complementarity: prompt decays, displaced vertices & long-lived particles
- FASER will play a key role in the search for HNLs
- Higgs sector has to be further tested

Muchas gracias!

