BSM Physics Opportunities with Far-Forward Experiments at a 100 TeV Proton Collider

Jyotismita Adhikary National Centre for Nuclear Research(NCBJ) Warsaw, Poland

7th Forward Physics Facility Meeting

29th February, CERN

together with R.M. Abraham, J.L. Feng, M. Fieg, F. Kling, T.R. Rabemananjara, J. Rojo and S. Trojanowski

Forward Physics facility@FCC

FCC-hh era

COM energies of 100 TeV and beyond Neutrino LLPs mCP +,K,D. Expected integrated luminosity of 30 ab⁻¹ ν production in Invisible Higgs DIS low dE/dx decays meson decays decay Neutrino Detector Neutrino / QCD neutrinos feebly-interacting particles **BSM** physics Decay volume & spectrometer **Ionization Detector**

Forward Physics Facility@FCC

BSM physics Examples

Dark Higgs Boson

$$\mathcal{L} = -m_{\phi}^2 \phi^2 - \sin \theta \frac{m_f}{v} \phi \bar{f} f - \lambda v h \phi \phi,$$

Dark Higgs boson

Production and decay

Production:

- □ Heavy meson decays ($B \rightarrow X_s \phi$), ($B \rightarrow X_s \phi \phi$)
- $\Box \quad \text{SM Higgs decay h} \rightarrow \phi \phi @ \text{FCC}$

F. Kling, S.Trojanowski (FORESEE), 2105.07077

Decay:

 \Box mostly bb, $\tau^+\tau^-$, ... final states

Large lifetime: TeV-energy $m_{\phi} = 10$ GeV, $\theta \sim 10^{-7} \rightarrow \tau_{\phi} \sim 100$ km

Dark Higgs sensitivity reach without or with trilinear coupling

Detector size: 20m x 20m x 400m

Dark Higgs and cosmology

Relic density, $\chi\chi \rightarrow \phi\phi$ (driven by κ)

Possible result of new unbroken gauge symmetries.

□ Massless dark vector boson A' kinetically mixes with hypercharge boson.

$$(\epsilon'/2\cos\theta_W)B^{\mu\nu}X_{\mu\nu}$$

If dark fermion χ couples to A' \square can also interact with hypercharge boson

$$(\epsilon' e'/\cos\theta_W)\bar{\chi}\gamma^\mu\chi B_\mu.$$

After EWSB, χ couples to photon and Z boson.

Gains millicharge, $\varepsilon \sim = \varepsilon' e'/e$

Millicharged particles production and detection

 χ detection via ionization (a-la-milliQan, FORMOSA@FPF)

S. Foroughi-Abari etal, 2010.07941

Millicharged particles sensitivity reach

Millicharged particles theory target

A. Berlin et. al 2211.05139

Tony Gherghetta et. al. 1909.0069

B.Holdom doi:https://doi.org/10.1016/0370-2693(86)91377-8

C. Cheung et. al. 0902.3246

□ mCP relic abundance is set by annihilations X X → A' A'
 □ e' is fixed by relic density of mCPs set to be equal to f_{DM} = 10⁻⁵.

Millicharged particles theory target

→ Neutrino effective electromagnetic current:

$$\langle \nu_f(p_f) | j^{\mu}_{\nu, \text{EM}} | \nu_i(p_i) \rangle = \overline{u}_f(p_f) \Lambda^{\mu}_{fi}(q) u_i(p_i)$$

For ultrarelativistic case with small momentum transfer
$$\Lambda^{\mu}_{fi}(q) = \gamma^{\mu} (Q_{fi} - \frac{q^2}{6} \langle r^2 \rangle_{fi}) - i\sigma^{\mu\nu} q_{\nu} \mu_{fi}$$

Charge radius

Presence of charge radius changes the vector coupling constant:

R.M. Abraham etal, 2301.10254

$$g_V^q o g_V^q - \frac{2}{3} Q_q m_W^2 \langle r_{\nu_\ell}^2 \rangle \sin^2 \theta_w.$$

increased neutrino neutral current event rate

Neutrino charge radius

❑ Neutrinos are produced in various meson decays at IP.

Large forward flux of high-energy (up to few tens of TeV) neutrinos of all 3 flavors Up to order $10^9 v_{\mu}$ and v_e interactions, and few x 10^6 for v_{τ}

Neutrino charge radius

- Signal: Electron scatterings and neutral current DIS (dominant)
- Charge radius changes the normalization of the event rate

Systematics

- Flux uncertainties
- Modelling of the neutrino-nucleus interaction cross section

With systematics

• Uncertainties arising from the experimental setup

Conclusions

- FPF@FCC out-of-the-box studies but updated for higher energies
 Neutrino/ QCD- Juan Rojo's talk
- Predictions: high-energy neutrinos up to tens of TeV and billions of interactions
- □ Can be used to search for new physics (collimated flux)
- Long-lived particles with masses up to tens or hundreds of GeV can be probed (examples: dark Higgs, mCPs)
- Convenient simulation tool FORESEE F. Kling, ST (FORESEE), 2105.07077 (initial forward BSM studies for FCC-hh, HE-LHC, SppC)

Roshan's talk

Thank you!

Supplementary material

Dark photon model results

Relaxion type model

The model

P.W. Graham, D.E. Kaplan, S. Rajendran, 1504.07551

Back reaction potential

Relaxion solution to the hierarchy problem: stabilizing the Higgs mass dynamically.

$$V(H,\phi) = \mu^{2}(\phi)H^{\dagger}H + \lambda(H^{\dagger}H)^{2} + V_{\rm sr}(\phi) + V_{\rm br}(h,\phi),$$

$$\mu^{2}(\phi) = -\Lambda^{2} + g\Lambda\phi + \dots,$$

Slow roll
potential
Deck resettion we

In the limit of small relaxion-Higgs mixing-

$$\mathcal{L}=-m_{\phi}^2\phi^2-\sin hetarac{m_f}{v}\phiar{f}f-\lambda vh\phi\phi,$$
 T. Flacke etal, 1610.02025
C. Frugiuele etal, 1807.10842 $\lambda=rac{(m_{\phi})^2}{v^2}$

Relaxion type model sensitivity reach

- □ BR(h→ $\phi\phi$) becomes suppressed for low m_{ϕ}
- Sensitivity gap between
 beam-dump and B-meson factories
 & invisible Higgs decay search
- $\Box \quad \text{Requires detecting } \phi \text{ decays}$
- Complementarity between the central and forward detectors to bridge the gap

