

FPF7

1/3/2024

Josh McFayden, Jamie Boyd, Felix Kling

OF SUSSEX

F² Introduction

- Electron neutrinos are to be measured with large statistics at FPF
 - The access they give to charm production making them especially interesting
 - Measurements in different rapidity regions can be especially powerful
 - Currently no separation between neutrino and anti-neutrino possible
- Motivation to have a simple electron neutrino detector that can do this

F² Introduction

- Can potentially be done with simple detector
 - Electrons from v_e will not leave FASERv2 so charge measurement is not possible.
 - Studies coming from ideas/discussions with Felix and Jamie
 - Possible use of LHCb SPD detectors

Slide from Felix

Inputs and assumptions

- Estimate of neutrino interactions
 - Extrapolate from FASERv2 estimates just scaling by mass
 - Account for interaction rate change as function of radius.

Detector			Interactions at FPF			
Name	Mass	Coverage	$CC \nu_e + \bar{\nu}_e$	$ $ CC $\nu_{\mu} + \bar{\nu}_{\mu}$	$ \operatorname{CC} \nu_{\tau} + \bar{\nu}_{\tau} $]
$FASER\nu 2$	20 tonnes	$\eta\gtrsim 8.5$	178k / 668k	943k / 1.4M	2.3k / 20k	408k
FLArE	10 tonnes	$\eta\gtrsim7.5$	36k / 113k	203k / 268k	1.5k / 4k	89k
AdvSND1	2 tonnes	$\mid 7.2 \lesssim \eta \lesssim 9.2 \mid$	6.5k / 20k	41k / 53k	190 / 754	17k
AdvSND2	2 tonnes	$\eta\sim 5$	29 / 14	48 / 29	2.6 / 0.9	32

[FPF Short Paper]

\mathbf{z}_{2} inputs and assumptions

- Estimate of neutrino interactions
 - Extrapolate from FASERv2 estimates just scaling by mass
 - Account for interaction rate change as function of radius.
 - Correct change in transverse area with corresponding different in flux
 - Will check results with dedicated calculation using e.g. <u>FastNeutrinoFluxSimulation</u>)

_							
Detector			Interactions at FPF				
	Name	Mass	Coverage	$CC \nu_e + \bar{\nu}_e$	$ \text{CC} \nu_\mu \!+\! \bar{\nu}_\mu$	$CC \nu_{ au} + ar{ u}_{ au}$	l
-	$FASER\nu 2$	20 tonnes	$\eta\gtrsim 8.5$	178k / 668k	943k / 1.4M	2.3k / 20k	408k
	FLArE	10 tonnes	$\eta\gtrsim7.5$	36k / 113k	203k / 268k	1.5k / 4k	89k
	AdvSND1	2 tonnes	$7.2 \lesssim \eta \lesssim 9.2$	6.5k / 20k	41k / 53k	190 / 754	17k
_	AdvSND2	$2 \mathrm{tonnes}$	$\eta \sim 5$	29 / 14	48 / 29	2.6 / 0.9	32

[FPF Short Paper]

		1 2
SERv2 ab ⁻¹	Flux-Area correction	tion Rate
500k	0.28	8.0 μ 8.0 μ 9.0 μ
.2M	0.18	0.4 0.2
10k	0.60	2 0 1 1 Displacement from Beam Ax

Detector requirements

- Electron neutrino detector requirements
 - Need a material with high enough density to have significant number of neutrino interactions
 - Need low enough number of radiation lengths for electron from v_e interaction to escape and be detected.
 - Plastic scintillator is a good candidate for this
 - ► EJ-200 = polyvinyltoluene \rightarrow X₀ = 42.5 cm
 - Such as LHCb SPD/Preshower detector...

J² LHCb SPD/PS Detector

- Old LHCb SPD/PS detector (now removed and being held for us) is potentially available
 - Dimensions:
 - 7.68 x 6.24 m transverse size
 - \sim 50 m² area
- If re-arranged for dimensions of FASER2:
 - ~24 cm depth possible from 1 SPD layer
 - > 2 x for SPD and PS = ~ 0.5 m depth $\sim 1 X_0$

SPD Neutrino Detector? EJ-200 plastic scintillator density: 1023.0 kg/m³ FASER2 "SPD Neutrino Wall": Volume: 3 x 1 x 0.5m = 1.5 m³ **Decay Volume** v_e/\overline{v}_e Mass: 1534.5 kg m(SPD)/m(Fv2): 0.077

Significant number of neutrino interactions even with ~1 ab⁻¹

FASERv2 3 ab ⁻¹	FASER2 SPD 3 ab ⁻¹	FASER2 S 1 ab ⁻¹
500k	~10k	~3k
1.2M	~160k	~50k
10k	~450	~150

SPD Neutrino Detector?

In good agreement with previous <u>studies</u> from Felix for carbon target:

NEW

- Run3 Setup, I3.6TeV
- 3m x Im around LOS
- Carbon Target
- $\rho(C) = 2.2 \text{ g/cm}^3$
- X0(C) = 19.3cm
- target mass = 1275kg
- 3000/fb

Probes TeV energy scale

- neutrino detector.
- Could offer ability to measure electron neutrino/anti-neutrino rates with rapidity range
- Reusing LHCb SPD/PS-based detector for this makes it an even more attractive possibility.
- Requires additional space in cavern, but not a huge amount.

Estimation of possible neutrino interaction rates in "simple" FASER2 electron

significant numbers of events at ~TeV energy scale and across relatively wide

Next step is to make proper calculations with e.g. FastNeutrinoFluxSimulation

Back-ups

Neutrino analysis

[arXiv:1908.02310]

	Particles	Main Decays	Ε	Q	S	
	π^+	$\pi^+ \to \mu \nu$	\checkmark	\checkmark	\checkmark	
	K^+,K_S,K_L	$K^+ \to \mu \nu, K \to \pi \ell \nu$	\checkmark	\checkmark	\checkmark	
\mathbf{S}	$\Lambda, \Sigma^+, \Sigma^-, \Xi^0, \Xi^-, \Omega^-$	$\Lambda \to p\ell\nu$	\checkmark	\checkmark	\checkmark	
	$D^+, D^0, D_s, \Lambda_c, \Xi_c^0, \Xi_c^+$	$D \to K \ell \nu, D_s \to \tau \nu, \Lambda_c \to \Lambda \ell \nu$			\checkmark	
	$B^+, B^0, B_s, \Lambda_b, \ldots$	$B \to D\ell\nu, \Lambda_b \to \Lambda_c\ell\nu$				

Josh McFayden | UCL | 26/1/2024

Inputs and assumptions Assumed numbers from

	FASERv2 3 ab ⁻¹
Ve	500k
Vμ	1.2M
VT	10k

FASER2 Decay Volume

- Assumed numbers

Calculating flux for orrecting for rate change as a function of distance from

	FASERv2 3 ab ⁻¹	∫(r) FASER	FIUX FASER2/ FASERv2	Flı Ar
Ve	500k	1.28	5.16	0.2
Vμ	1.2M	1.15	3.39	0.
VT	10k	1.70	11.22	0.(

