

FORWARD CHARM WITH ICECUBE LULLU

University of Wisconsin-Madison

NEUTRINOS: THE WINDOW TO THE EXTREME UNIVERSE

keV MeV **TeV** EeV GeV PeV ZeV Log₁₀(Traveled distance/m) Ultra-high-energy Supernova High-energy Observable Universe Gpc 25 GZK horizon IceCube-Gen2 Mpc AugerPrime RNO-G 20 kpc GRAND POEMMA POEMMA IceCube ZAP **BEACON** pc **JUNO** Super-K w/Gd **DUNE ANTARES** 15 PUEO Hyper-K KM3NeT Jinping TAMBO Trinity $P\text{-}ONE$ Selen atten Solar TAROGE AU ۰ Baikal-GVD 10 Ashra NTA *IceCube* Geoneutrin**ös** Upgrade $EUSO - SPB2$ R_{\oplus} RET **SNS ESSVB** Atmospheric 5 GCOS Reactor **VSBL SBL** km ⊣ FASER_v 3 5 11 13 15 17 19 21 7 9 Log_{10} (Neutrino energy/eV) Snowmass 2021 HE&UHE nu paper

NEUTRINO DETECTIONS

4

NEUTRINO INTERACTIONS

Detect Cherenkov radiation from secondary charged particles

Origins of icecube neu

 >100 Tev >10 Tev >1 Tev **NGC1068**

https://userweb.icecube.wisc.edu/ ~lulu/globe_AR/web city/ngc1068/

46.4771 6.2017

- Hadronic interactions proton-proton or proton-gamma at source
- Super massive blackhole accelerator beam many light years of baseline
- Energy ranges from TeV to EeV

8

 \overline{Z} enith angle = 0 deg

ASTROPHYSICAL Galactic

- Hadronic interactions proton-proton or proton-gamma at galactic plane
- \cdot ~10% diffuse astrophysical flux
- Zenith angle follows galactic plane distribution, not isotropic

Hadronic interactions

ATMOSPHERIC NEUTRINO FLUX DEPEND ON ZENITH ANGLE

- o prompt is isotropic over zenith
- o degenerate from extragalactic diffuse flux (signal)
- o conventional peaks at horizon
- o νµ production dominated by kaon decay

ATMOSPHERIC NEUTRINO FLUX DEPEND ON ENERGY AND FLAVOUR

Nue: prompt overtakes conventional at \sim 20 TeV

Numu: prompt overtakes conventional at \sim 200 TeV

Analysis 1

HIGH ENERGY STARTING EVENTS (HESE)

Veto layer to select pure neutrino events

 $\cdot V_{\rho}$

Analysis 1 HESE: PROMPT FLUX $\phi_{\nu}^{\text{atm}} = \Phi_{\text{conv}} \left(\phi_{\nu}^{\pi} + R_{K/\pi} \phi_{\nu}^{K} \right) \left(\frac{E_{\nu}}{E_{0}^{c}} \right)^{-\Delta_{\gamma_{CR}}} + \Phi_{\text{prompt}} \phi_{\nu}^{p} \left(\frac{E_{\nu}}{E_{0}^{p}} \right)$ $-\Delta\gamma_{CR}$

Phys. Rev. D 104 , 022002 (2021) 15

Prompt is bounded at 0

ENHANCED STARTING TRACK SELECTION (ESTES) Analysis 2

Breaking degeneracy of prompt: self-veto

PhD thesis, Manuel Silva

Analysis 3

Sum

NORTHERN TRACKS Analysis 3

- Hadronic interaction model switched to Barr parameters
- Atmospheric predictions now produced with MCEq

Astrophys. J. 928 (2022) 50

 $-\gamma$ spl

$NORTHER$ N TRACK: DATA FIT PROMPT $=0$ Analysis 3

Mis-modelling of astrophysical spectrum leads to bias in prompt

i.e., structures beyond single power law

Average Fit value (Standard deviation) **Fitted Astro Model** erlaw coparabola Powerlaw 2.3 0.4 1.0 1.1 (0.2) (0.5) (0.0) (0.6) -2.9 1.0 0.9 0.7 (3.3) (0.1) (0.4) (0.7) -0.9 1.0 0.7 (2.6) (1.3) (0.2) (0.7) 3.6 2.3 3.6 1.1 (0.6) (0.6) (0.5) (0.4) -3.6 2.0 1.4 0.5 (4.8) (0.8) (0.6) (1.2) 2.9 3.9 3.6 1.8 (3.7) (2.8) (2.1) (3.1)

IceCube Preliminary

PhD thesis, Joeran Stettner

Analysis 4

COMBINED FIT: TRACKS AND CASCADES

* high statistics of tracks to constrain conv., self-veto from cascades for prompt

* single power law no longer describes data & prompt bestfit non zero

Cascade histogram

Cascade histogram

22

 $10⁷$

Analysis 4

TRACK+CASCADE FIT

State of art

** could do study how would precise knowledge (narrow prior) of prompt impact on astrophysical spectrum. Currently no prior

Work-in-progress

ATMOSPHERIC MUON AND NEUTRINO FLUX

Neutrinos and muons share same hadronic origin from the Atmospheric air showers

CHARM FROM DEEP INELASTIC SCATTERING
 $D^0, D^{+/-}, D_s^{+/-}, \Lambda_c^{+/-}$

Charm: higher inelasticity from DIS & may decay semileptonically

-> modelled as inelasticity uncertainty

Figure 2.11: Charm production fraction computed from PYTHIA neutrino CC and NC DIS interactions using CT14nlo.

Background for nutau searches sensitive at tau length~10m (D0 interaction/decay length ~3.3m at 50 TeV)

Work-in-progress

CHARM FROM HADRONIC SHOWER IN ICE

charm produced in hadronic showers are not currently considered in nutau and flavour analyses

Shower profile fluctuations introduce additional systematics

CONCLUSION

IceCube diffuse analysis has come a long way -modernizing treatments of atmospheric neutrino flux uncertainties + hadronic interaction models -> now in transition to DAEMON flux (see Anatoli's talk)

* Self-veto breaks degeneracy of atmospheric prompt flux -> precise modeling of self-veto is a priority for diffuse analysis in the era of high statistics when features are becoming significant in the flux spectrum

* Prompt flux remains dominate systematic uncertainty for astrophysical parameters: followup studies possible to provide quantitative statement

* Unsolved: unify uncertainties in atmospheric muons and neutrinos

* Did not mention – nu seasonal variation, muons from IceTop (i.e., muon puzzle), cross section measurements, Sterile neutrino search, di-muon search, leptoquark search …

Many plots taken from PhD thesis of : Joeran Stettner, Sebastian Schoenen, Manuel Silva, Austin Schneider And curtsies to support from: Jakob Böttcher, Philipp Fürst, Erik Ganster, Richard Naab, Tianlu Yuan.