Open questions in atmospheric lepton fluxes

Anatoli Fedynitch

High-Energy Theory Group, Institute of Physics, Academia Sinica, Taipei

7th Forward Physics Facility Meeting, CERN, 2024/03/01

Neutrino spectra at Earth

Vitagliano, Tamborra, Raffelt 2019, 1910.11878

Modeling of inclusive lepton fluxes in the atmosphere

Features of high-energy atmospheric muon and neutrino spectra

AF, F. Riehn, R. Engel, T.K. Gaisser, T. Stanev, PRD 100 2019

Bands (zenith-enhancement):

- Lower boundary $\cos \theta = 1$, vertical
- Upper boundary $\cos \theta = 0$, horizontal

Different weight of hadrons in lepton production, due to:

- Hadron production cross sections
- Branching ratio & decay kinematics

Zenith angle dependence at higher-E is sensitive to hadron production

But surface muons never looked great... (known for > 10 years or >> longer)

- Calculations (MCEq) that use recent (or old) hadronic interaction models and recent cosmic ray flux measurements are lower than data (~30%)
- This is not entirely new but...
- Cosmic ray fluxes are very much constrained by AMS, CALET, etc. up to multi-TeV energies
- Hadronic interaction models have been tuned to LHC data (but not in the relevant forward phase space) so could be the reason
- Cascade codes (CORSIKA 7/8, MCEq, or FLUKA) have been +- cross checked and are not the origin

Hadron production phase space seen by neutrino detectors

AF & M. Huber, arXiv:2205.14766

- Low-energy range, relevant for neutrino oscillations (DeepCore), covered by fixed target data
- Most (high-energy) atmospheric neutrinos in IceCube not covered by any experiment
- LHC energies are too high, direct constraints possible from $\sqrt{s} = 900 \text{ GeV}$

Hadron prod. phase space relevant for characterization of prompt and astro neutrinos

- At 10 100 TeV atmospheric and astrophysical fluxes are similar → strong model dependence → large syst. uncertainty
- Reduction of atm. systematics crucial to reveal
 prompt flux
- More in Lu Lu's talk after mine
- FPF's energy range might be a bit high for direct constraints (in p-Oxygen)
- Nonetheless, indirectly we may learn something, such as about Feynman scaling for charged hadrons

Contours = 90% of muon neutrino events above threshold in reconstructed energy in IceCube

Data-driven model (DDM) built in incl. cross sections

- Uncertainties conservatively scale up in absence of forward data
- K⁺⁻ data at 158 GeV extrapolated from pp→pC
 - \rightarrow + 5-7% error from MC
- Carbon to air correction < 1%
- + proton and neutron secondaries , & π^- projectiles (not shown)
- Neutron (and π⁺ projectiles) via isospin relations
- K⁰ via isospin

Relevant phase space is $0.1 < x_{Lab} < 0.4$, contributes most to the weighted integral

Atmospheric muon fluxes from DDM + GSF

- DDM is built using fixed target/spectrometer data (NA49/61)
- GSF: interpolates direct CR experiments (incl. AMS → few % error)
- Muon observations barely compatible within "pessimistic" error estimate of DDM
- Central prediction compatible with hadronic interaction models → the models can not be that wrong!
- Next question: how should a model look like, which is compatible with muon data? → daemonflux

11

Daemonflux: GSF+DDM calibrated to surface muon measurements

J. P. Yanez & AF, PRD, arXiv:2303.00022

What muons tell about energy dependence of forward particle yields

- Daemonflux uses 1 or 2 cross section "shapes" from 31 & 158 GeV
- Priors (errorbars) constrained by errors from fixed target data
- Interpolates linearly in log(E) between those
- DDM assumes Feynman scaling (shape of longitudinal spectrum constant = pink thick line)
- More degrees of freedom added to daemonflux such that Feynman scaling can be violated
- Black

Atm.-flux-relevant phase space
$$\rightarrow$$

CR-Spectrum-weighted moment: $Z_{Nh}(E_N) = \int_0^1 dx_{Lab} \ x_{Lab}^{\gamma(E_N)-1} \frac{dN_{N \to h}}{dx_{Lab}}(E_N)$

SIBYLL* vs data-driven muon-calibrated model (daemonflux)

- **F. Riehn**, AF, R. Engel, accepted, to appear soon
- SIBYLL*: set of modifications to SIBYLL-2.3d to solve the muon excess UHECR (see R. Engel's talk)
- SIBYLL* has similar inclusive fluxes as the other models +-10%
- Interestingly, neutrino fluxes are predicted by daemonflux not different from SIBYLL estimates
- But until now, no neutrino data sensitive to the flux normalization...
- Could FASER/FPF measure the pi + K (0.1 < x_F < 0.4) neutrinos to this precision?
- → can determine if 30% excess is due to hadronic int. or from CR flux

High energy constraints from underground μ ?

W. Woodley (UofA), TeVPa 2022

W. Woodley, TeVPa 2022 and Woodley, AF, Piro in prep.

Relation of depth to surface and CR energy

Daemonflux vs models underground/-water

A. Romanov et al. (KM3NeT), PoS(ICRC2023) 338

> 30% discrepancy confirmed using independent analysis and tools pipeline using underwater detector.

F. Riehn, AF, R. Engel, to appear soon

Total muon fluxes underground: "simple" measurement

- Measurement almost model independent
- Calculations difficult (chem. rock composition, density, overburden topography)

Woodley, AF, Piro, shown at PoS(ICRC2023) 338, paper to appear soon

• Final result will change (a bit), pls don't use these plots

Summary

- Atm. Leptons are a different channel to study very forward hadronic interactions (mostly p-air)
- "Differences" seen in comparisons with muon data at the surface and underground
- Validation/calibration via muon surface fluxes very challenging if performed rigorously! (old data and docs)
- Models 30-35% lower than muon data above a few tens of GeV
- Discrepancy in neutrinos (more sensitive to kaon production) experimentally not established
- Can the FPF constrain the pion + kaon yields within $0.1 < x_F < 0.4$ in p-O or pp interactions?
- Origin of discrepancies different from the muon excess in air showers (SIBYLL*)
- Current work is on understanding data

Related muon production phase space

 π^{\pm} HARP p+nPHENIX/STAR Total NA49/NA61 LHC exp. $\sqrt{s_{\rm NN}}$ (GeV) $\sqrt{s_{\rm NN}}$ (GeV) $\sqrt{s_{NN}}$ (GeV) π, Κ FPF FPF 10³ 10³ 10³ 10² 10¹ 10² 10² 10^{1} 10^{1} 10⁰ $X_{\text{lab}} = E_{\text{secondary}}/E_{\text{projectile}}$ 10^{-1} ν 10-2 $I_{\mu}(E_{\mu} > 40 \text{ GeV})$ $I_{\mu}(E_{\mu} > 100 \text{ MeV})$ $I_{\mu}(E_{\mu} > 1 \text{ TeV})$ $10^1 \ 10^2 \ 10^3 \ 10^4 \ 10^5 \ 10^6 \ 10^0$ $10^1 \ 10^2 \ 10^3 \ 10^4 \ 10^5 \ 10^6 \ 10^0$ $10^1 \ 10^2 \ 10^3$ $10^4 \ 10^5 \ 10^6$ 10⁰ Beam momentum (GeV/c) Beam momentum (GeV/c) Beam momentum (GeV/c)

AF & M. Huber, arXiv:2205.14766

Atm. leptons != air showers: different "astroparticle observable"

- Inclusive fluxes sensitive to "first interaction"
- Air shower muons at the surface mostly from pion interactions
- Reason: competition between falling CR flux vs falling forward cross section
- Problems in incl. leptons distinct should be distinct from air showers

Above 100 TeV: territory of the (undiscovered) prompt muons and neutrinos

Prompt muons more production channels than prompt neutrinos:

- Rare decays of unflavored mesons e.g., $\eta \rightarrow \mu^+ \mu^-$
- EM pair production $\gamma \rightarrow \mu^+ \mu^-$

- Large uncertainties from pQCD
- pQCD might be incomplete (intrinsic charm)
- The fragmentation $(c \rightarrow D)$ function is a choice

Charm production cross section inaccessible to present-day colliders

- Each line represents a collider running at fixed \sqrt{s}
- Gap in x between LHC coverage is due to the beam pipe
- Detectors need particle ID capability & sufficient luminosity
- Indirect constraints from new forward detectors like FASER and the proposed FPF (see 2203.05090)
- New insights expected from proton-oxygen collisions in Run3

Data-Driven Hadronic Interaction Model (DDM)

Building the DDM

Measurements of atm. neutrinos

- Degeneracy between detector systematics, cross section, assumed flux model and oscillation parameters
- Low energies:
 - Cross section models uncertain -> uncertain norm and spectrum
 - Faint and complex signal -> syst. errors
- At high energies:
 - Muon track from numu charged current not contained withing detectors -> bad energy res.
 - Electron neutrino measurements suffer from lack statistics and neutral current background -> bad stats

Fit quality

Contribution to Chi2

Physics parameter part of the correlation matrix: Total 34 parameters: 18 hadrons + 6 GSF + 10 experimental J. P. Yanez & AF, arXiv:2303.00022

2

J. P. Yanez & AF, arXiv:2303.00022

Total uncertainty of daemonflux (DDM+GSF+Fit)

J. P. Yanez & AF, arXiv:2303.00022

The Global Spline Fit – nucleon fluxes (MCEq input)

- Most contribution from proton and helium flux
- Correlations between H and He affect
 - CR neutron fraction
 - Muon charge ratio
 - Neutrino/Antineutrino ratio
- → Need to model two correlated components
- \rightarrow technically ~80 parameters

Underground data constraining if systematics understood

AF, W. Woodley, M.-C. Piro, ApJ 928 27 (2022)

- New fast code by William Woodley (MUTE) <u>https://github.com/wjwoodley/mute</u>
- Attempt combined fit with surface muons \rightarrow nail down high energy uncertainties
- Challenge: survey experimental data with explicit systematic uncertainties

12

MUTE (Muon inTnsity codE): fast convolutions

https://github.com/wjwoodley/mute

AF, **W. Woodley**, M.-C. Piro, *ApJ* **928** 27 (2022)

W. Woodley, TeVPa 2022 and Woodley, AF, Piro in prep.

MUTE (Muon inTnsity codE): Muon flux for labs under mountains

https://github.com/wjwoodley/mute

$$\Phi^u = \iint_{\Omega} I^u(X(\theta,\phi),\theta) \mathrm{d}\Omega.$$

