Introduction to the Gamma Factory

LISA conference, CERN the 2nd of September 2024

Mieczyslaw Witold Krasny

LPNHE, CNRS and University Paris Sorbonne and CERN, BE-ABP

This talk is dedicated to Bruce

"New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to <u>discover</u> new things that have to be explained" - F. Dyson

"Gamma Factory" studies

The Gamma Factory proposal for CERN[†]

[†] An Executive Summary of the proposal addressed to the CERN management.

Mieczyslaw Witold Krasny* LPNHE, Universités Paris VI et VII and CNRS–IN2P3, Paris, France

e-Print: 1511.07794 [hep-ex]

~100 physicists form 40 institutions have contributed so far to the Gamma Factory studies

A. Abramov¹, A. Afanasev³⁷, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴,
G. Arduini², D. Balabanski³⁴, R. Balkin³², H. Bartosik², J. Berengut⁵, E.G. Bessonov⁶, N. Biancacci²,
J. Bieroń⁷, A. Bogacz⁸, A. Bosco¹, T. Brydges³⁶, R. Bruce², D. Budker^{9,10}, M. Bussmann³⁸, P. Constantin³⁴,
K. Cassou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Cussou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Dupraz¹¹, Y. Dutheil², K. Dzierżęga⁷, V. Fedosseev², V. Flambaum²⁵, S. Fritzsche¹⁷, N. Fuster
Martinez², S.M. Gibson¹, B. Goddard², M. Gorshteyn²⁰, A. Gorzawski^{15,2}, M.E. Granados², R. Hajima²⁶,
T. Hayakawa²⁶, S. Hirlander², J. Jin³³, J.M. Jowett², F. Karbstein³⁹, R. Kersevan², M. Kowalska²,
M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamont², T. Lefevre², T. Ma³², D. Manglunki², B. Marsh²,
A. Martens¹², C. Michel⁴⁰ S. Miyamoto³¹ J. Molson², D. Nichita³⁴, P. Nutarelli¹¹, L.J. Nevay¹, V. Pascalutsa²⁸,
Y. Papaphilippou², A. Petrenko^{18,2}, V. Petrillo¹², L. Pinard⁴⁰ W. Płaczek⁷, R.L. Ramjiawan², S. Redaelli²,
Y. Peinaud¹¹, S. Pustelny⁷, S. Rochester¹⁹, M. Safronova^{29,30}, D. Samoilenko¹⁷, M. Sapinski²⁰, M. Schaumann²,
R. Scrivens², L. Serafini¹², V.P. Shevelko⁶, Y. Soreq³², T. Stoehlker¹⁷, A. Surzhykov²¹, I. Tolstikhina⁶,
F. Velotti², A. Viatkina⁹ A.V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²⁷ D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren², M. Zanetti^{23,13}, F. Zimmermann², M.S. Zolotorev²⁴ and F. Zomer¹¹

Gamma Factory studies are anchored and supported by the CERN Physics Beyond Colliders (PBC) framework. More info on all the GF group activities:

We acknowledge the crucial role of the CERN PBC "framework" in bringing our accelerator tests, GF-PoP experiment design, software development and physics studies to their present stage!

Outline of the talk

- Rationale behind the Gamma Factory initiative
- Basic principles
- Feasibility proof
- Scientific programme selected examples
- Outlook

Rationale behind the Gamma Factory initiative

1. Curiosity

- How to efficiently "accelerate" photons?
- The science of high energy atomic beams (production, storage, cooling, collision aspects) has, so far, not been developed. Atomic beams are very special -- they can be manipulated and controlled with unprecedented precision
- New quantum physics beam effects (beams of "Schrödinger cats")
- No simulation framework existed -- it had to be created and benchmarked
- New challenges for the laser technology

• <u>Sociological curiosity</u>:

Can the particle, nuclear, atomic and accelerator and applied physics expertise be merged into a joint multidisciplinary project?

• Political curiosity:

Can a novel multidisciplinary project be developed **and implemented** in a "High Energy Physics" laboratory such as CERN?

2. Balance of the high-energy and high-intensity frontiers

- Main CERN mission: high energy frontier (detailed Higgs studies at the HL-LHC, FCC-ee)
- High intensity frontier (dark matter, neutrino mass puzzle(s), families, lepton universality, etc...

Gamma Factory can significantly improve the present intensity limits of the:

- γ -beams by a factor >10⁶ \rightarrow 10¹⁸ γ /sec,
- muon beams by a factor of 10^3 , $\rightarrow 7 \times 10^{13} \mu/\text{sec}$,
- polarised positron beams by a factor of 10^3 , $\rightarrow:10^{16}$ e+/sec,
- quasi-monochromatic MeV neutron beams of $\rightarrow:10^{17}$ neutrons/sec,
- radioactive ion beams $\rightarrow:10^{12}$ ions/sec

3. Physics with LHC extracted beams?

- SPS has demonstrated operation with cycle intensity 2-4x10¹³ protons delivering 4x10¹⁹ protons/year for the SPS fixed target programme, (PSB can deliver 10²⁰ protons/year for the ISOLDE programme)
- If LHC is used in the future as the source of extracted beams (3.5 10¹⁴ circulating protons with ~1 hour filling/ramping), then maximally 10¹⁸ (fast extraction) protons/year can be delivered for the LHC fixed target programme

Gamma Factory could extract $\sim 10^{25} \gamma/year$ for a fixed target programme (MHz repetition rate). Efficient extraction of the RF power in the form of particle beams!

4. Empty time slot for the Gamma Factory physics programme?

- Gamma Factory can extend significantly the scope of the LHC-based physics programme (with new questions and new tools)
- ... at a relatively low cost (~1% of the cost of the FCC-ee)

5. Energy consumption and sustainability

	Cost-estimate /BCHF	AC-Power /MW	Comments
Infrastructure	5.5		100km tunnel and surface infrastructure
FCC-ee	5	260-350	+1.1BCHF for the Top stage (365GeV)
FCC-hh	17	580	

Gamma Factory beam-driven, sub-critical reactor (with the efficient transmutation of its waste) could potentially provide the necessary AC plug power needs for the growing CERN accelerator infrastructure.

6. Opening new research opportunities at CERN

- particle physics (precision QED and EW studies, vacuum birefringence, Higgs physics in γγ collision mode, rare muon decays, precision neutrino physics, QCD-confinement studies, …);
- **nuclear physics** (nuclear spectroscopy, cross-talk of nuclear and atomic processes, GDR, nuclear photo-physics, photo-fission research, gamma polarimetry, physics of rare radioactive nuclides,...);
- atomic physics (highly charged atoms, electronic and muonic atoms, pionic and kaonic atoms);
- astrophysics (dark matter searches, gravitational waves detection, gravitational effects of cold particle beams, ¹⁶O(γ,α)¹²C reaction and S-factors...);
- fundamental physics (studies of the basic symmetries of the universe, atomic interferometry,...);
- accelerator physics (beam cooling techniques, low emittance hadronic beams, high intensity polarised positron and muon sources, beams of radioactive ions and neutrons, very narrow band, and flavour-tagged neutrino beams, ...);
- **applied physics** (accelerator driven energy sources, fusion research, medical isotopes and isomers precision lithography).

Gamma Factory – basic principles

Gamma Factory photon source

Resonant absorption and emissions of photons by **atoms**

Photon acceleration -- Energy leap:

High energy atomic beams play the role of passive light-frequency converters:

Absorption					
Lorentz transformation $\omega' \sin \theta' = \omega \sin \theta,$ $\Delta \theta' \approx \frac{\Delta \theta}{2\gamma}$					
$\omega' = (1 + \beta \cos \theta) \gamma \omega \approx \left(1 + \beta - \beta \frac{\theta^2}{2}\right) \gamma \omega \approx 2\gamma \omega.$					
Emission					
$\omega_1 \sin \theta_1 = \omega' \sin \theta'_1 \Rightarrow \sin \theta_1 = \frac{\sin \theta'_1}{\gamma(1 + \beta \cos \theta'_1)},$					
$\omega_1 = \gamma (1 + \beta \cos \theta'_1) \omega' \approx 2\gamma^2 (1 + \beta \cos \theta'_1) \omega.$					
$\nu^{max} \longrightarrow (4 \gamma_L^2) \nu_i$					

 $\gamma_L = E/M$ - Lorentz factor for the ion beam

Photon acceleration – Intensity and efficiency leap:

large cross-section for atomic collisions

nverse Compton scattering	Cross-section	Requirements
M _M M _M Laser electron	Electrons: $\sigma_e = 8\pi/3 \times r_e^2$ r_e - classical electron radius $\sigma_e = 6.6 \times 10^{-25} \text{ cm}^2$ $\sigma \propto 10^9$	$E_{beam} = 1.5 \text{ GeV}$ LINAC or LWFA Electron fractional energy loss: emission of 150 MeV photon: $E_{\gamma}/E_{beam} = 0.1$ (electron is lost!)
Gamma Factory Myrray PSI Laser Laser Example: Pb. hydrogen-like ions	Partially Stripped Ions: $\sigma_{res} = \lambda_{res}^2 / 2\pi$ λ_{res} - photon wavelength in the ion rest frame $\sigma_{res} = 5.9 \times 10^{-16} \text{ cm}^2$	$E_{beam} = 574\ 000\ GeV$ (LHC) Electron fractional energy loss: emission of 150 MeV photon: $E_{\gamma}/E_{beam} = 2.6 \times 10^{-7}$ (ion undisturbed!)

stored in LHC γ_L = 2887

Extraordinary properties of the GF photon source

1. Point-like, small divergence

 $\blacktriangleright \Delta z \sim I_{PSI-bunch} < 7 \text{ cm}, \Delta x, \Delta y \sim \sigma^{PSI}_{x}, PSI_{y} < 50 \mu m, \Delta(\theta_{x}), \Delta(\theta_{y}) \sim 1/\gamma_{L} < 1 \text{ mrad}$

2. Huge jump in intensity:

> More than 7 orders of magnitude with respect to existing (being constructed) γ -sources

3.Very wide range of tuneable energy photon beam :

> 10 keV – 400 MeV -- extending, by a factor of ~1000, the energy range of the FEL photon sources

4. Tuneable polarisation:

- > γ -polarisation transmission from laser photons to γ -beams of up to 99%
- 5. Unprecedented plug power efficiency (energy footprint):
- LHC RF power can be converted to the photon beam power. Wall-plug power efficiency of the GF photon source is by a factor of ~300 better than that of the DESY-XFEL!

(assuming power consumption of 200 MW - CERN and 19 MW - DESY)

<u>A concrete example</u>: Nuclear physics application: He-like, LHC Calcium beam, $(1s-2p)_{1/2}$ transition, TiSa laser, 20 MHz FP cavity

Highly-collimated monochromatic *y*-beams:

- the beam power is concentrated in a narrow angular region (facilitates beam extraction),
- the (E_γ, Θ_γ) correlation can be used (collimation) to
 "monochromatize" the beam

Polarised (and/or twisted) GF photon beams

For more details see presentations at our recent, Gamma Factory workshop: https://indico.cern.ch/event/1076086/

Gamma Factory – feasibility proof steps

Novel technology: Resonant scattering of laser photons on ultra-relativistic atomic beam

CERN as the GF project host:

re-use of already existing accelerator infrastructure

Gamma Factory (additional) beam requirements:

- modification of the ion stripping scheme,
- storage of atomic beams

Step 1 : Requisite TT2 stripper system installed

Charge-State Distributions of Highly Charged Lead Ions at Relativistic Collision Energies

Felix M. Kröger,* Günter Weber, Simon Hirlaender, Reyes Alemany-Fernandez, Mieczyslaw W. Krasny, Thomas Stöhlker, Inga Yu. Tolstikhina, and Viacheslav P. Shevelko

Step 2: Atomic beams stored in in the LHC

topics 🔻

follow +

A joint Fermilab/SLAC publication

LHC accelerates its first "atoms"

07/27/18 | By Sarah Charley

Lead atoms with a single remaining electron circulated in the Large Hadron Collider.

https://home.cern/about/updates/2018/07/lhc-accelerates-its-first atoms https://www.sciencealert.com/the-large-hadron-collider-just-successfully-accelerated-its-first-atoms https://www.forbes.com/sites/meniameberboucha/2018/07/31/lhc-at-cern-accelerates-atoms-for-the-first-time/#36db60ae5cb https://www.livescience.com/63211-lhc-atoms-with-electrons-light-speed.html https://interestingengineering.com/cerns-large-hadron-collider-accelerates-its-first-atoms https://www.sciencenews.org/article/physicists-accelerate-atoms-large-hadron-collider-first-time https://insights.globalspee.com/article/9461/the-lhc-successfully-accelerated-its-first-atoms https://www.maxisciences.com/lhc/le-grand-collisionneur-de-hadrons-lhc-accomplit-une-grande-premiere_art41268.html https://www.symmetrymagazine.org/article/lho-accelerates-is-first-atoms

Step 3: Requisite precision of the momentum and beam position control at the collision point with laser photons

Laser photons

Step 4: World record of the stored laser photon beam power – satisfying the full GF research programme

RESEARCH ARTICLE | JUNE 20 2024

Stable 500 kW average power of infrared light in a finesse 35 000 enhancement cavity ⊘

X.-Y. Lu 0; R. Chiche 0; K. Dupraz 0; F. Johora 0; A. Martens \blacksquare 0; D. Nutarelli 0; Y. Peinaud 0; V. Soskov; A. Stocchi; F. Zomer 0; C. Michel 0; L. Pinard 0; E. Cormier 0; J. Lhermite 0; X. Liu 0; Q.-L. Tian 0; L.-X. Yan 0; W.-H. Huang 0; C.-X. Tang 0; V. Fedosseev 0; E. Granados 0; B. Marsh 0

+ Author & Article Information Appl. Phys. Lett. 124, 251105 (2024) https://doi.org/10.1063/5.0213842

Article history 🕒

FINAL Step : Gamma Factory Proof-of-Principle experiment

PLANNED INSTALLATION TIME – LS3

Gamma Factory Proof-of-Principle (PoP) SPS experiment

SPS LSS6 zone

F-P cavity – "in beam" position

Scientific programme – selected examples

GF studies: published papers (INSPIRE) and books

GF experimental programme with atomic beams

Spectroscopy of highly-charged, "small-size" atoms

z [µm]

Opening new research opportunities in atomic physics: Highly-charged atoms – very strong (~10¹⁶ V/cm) electric field (QED-vacuum effects) Small size atoms (electroweak effects, $\sin^2 \theta_W$, ... Hydrogen-like and Helium-like atomic structure (calculation precision and simplicity) Atomic degrees of freedom of trapped highly-charged atoms can be resonantly excited by lasers 0 annalen physik ad

Feature Article 🗇 Open Access 💿 😱

Atomic Physics Studies at the Gamma Factory at CERN

Dmitry Budker 🕱, José R. Crespo López-Urrutia, Andrei Derevianko, Victor V. Flambaum, Mieczyslaw Witold Krasny, Alexey Petrenko, Szymon Pustelny, Andrey Surzhykov 💌, Vladimir A. Yerokhin, Max Zolotorev ... See fewer authors A

First published: 09 July 2020 | https://doi.org/10.1002/andp.202000204

38

ring

Crystalline beams?

Gamma Factory offers an unprecedented precision of the absolute energy (γ_L) calibration of the SPS and LHC beams

- Present calibration uncertainty (LHC) 10⁻³
- Gamma Factory $< 2 \times 10^{-4}$

(limited only by the precision of the calculation of the transition energies in H-like, He-like and Li-like atoms)

... and very precise control of their momentum spread (FP cavity in the dipole magnet)

Gamma Factory "cold" atomic beams

Beam cooling speed: the laser wavelength band is chosen such that only the ions moving in the laser pulse direction (in the bunch rest frame) can resonantly absorb photons. Opens a possibility of forming at CERN hadronic beams of the required longitudinal and transverse emittances within a seconds-long time scale

Simulation of laser cooling of the lithium-like Ca(+17) bunches in the SPS: transverse emittance evolution.

Gamma Factory (complementary) path to HL-LHC:

Studies of the implementation scheme with laser-cooled isoscalar Ca beams

Two complementary ways to **increase** collider **luminosity** for fixed n₁,n₂,and f :

reduce β_x* and β_y*
 reduce ε_x and ε_y

HL-LHC – β^* reduction by a factor of 3.7 (new inner triplet)

of 5 can be achieved in 9 seconds (top SPS energy)

The merits of cold isoscalar beams

- higher precision in measuring SM parameters in CaCa than in pp collisions
- Possible unique access to exclusive Higgs boson production in photon–photon collisions?
- Lower pileup background at equivalent nucleon-nucleon (partonic) luminosity.
- New research opportunities for the EW symmetry breaking sector.

If necessary: add optical stochastic cooling time for the Ca beam at the LHC top energy $t_{cool} \sim 1.5$ hours (V. Lebedev)

ep collisions at LHC

(in the ATLAS, CMS, ALICE and LHCb interaction points)

Atomic beams can be considered as **independent electron** and nuclear beams as long as the incoming proton scatters with the momentum transfer q >> 300 KeV! Opens the possibility of collecting, by each of the LHC detectors, over one day of the **Pb+81–p** operation, the effective ep-collision luminosity comparable to the HERA integrated luminosity in the first year of its operation (1992) – in-situ diagnostic of the emittance of partonic beams at the LHC!

Initial studies:

GF experimental programme with high intensity photon beams

... the GF-future of the LHC?

DM searches and studies (if discovered), ALP example

Three principal advantages of the Gamma Factory photon beams:

- Large fluxes: ~10²⁵ photons on target over year (SHIP 10²⁰ protons on target)
- Multiple ALP production schemes covering a vast region of ALP masses (sub eV GeV)
- Once ALP candidate seen \rightarrow a unique possibility to tune the GF beam energy to the resonance.

DM searches and studies (ALP example)

DM searches and studies (dark photon example)

Gamma factory searches for extremely weakly interacting particles

Sreemanti Chakraborti, Jonathan L. Feng, James K. Koga, and Mauro Valli Phys. Rev. D **104**, 055023 – Published 21 September 2021

Photon-beam-driven energy source

Best use of the CERN expertise to produce rather than buy the plug-power:

GF- Photon-beam-driven energy source (ADS)

Satisfying three conditions:

- · requisite power for the present and future CERN scientific programme
- operation safety (a subcritical reactor)
- efficient transmutation of the nuclear waste (very important societal impact if demonstrated at CERN –given its reputation)

APS April Meeting 2023 Minneapolis, Minnesota (Apr 15-18)

M06 Invited Accelerate Solving Energy Crisis: From Fission to Fusion Room: MG Salon F - 3rd Floor Sponsor: DPB FIP Chair: Christine Darve, European Spallation Source Invited Speakers: Hamid Ait Abderrahmane, Mieczyslaw Witold Krasny, Ahmed Diallo, Alireza Haghighat

GF experimental programme with secondary beams

- Polarised positrons potential gain of up to a factor of 10⁴ in intensity with respect to the KEK positron source, satisfying both the LEMMA muon–collider and the LHeC requirements
- > <u>Muons</u> potential gain by a factor of 10³ in intensity with respect to the PSI muon source, charge symmetry ($N\mu^+ \sim N\mu^-$), polarisation control
- Neutrinos fluxes comparable to NuMAX but: (1) Very Narrow Band Beam, driven by the small spectral density pion beam and (2) unique possibility of creating flavour- and CP-tuned beams driven by the beams of polarised muons
- <u>Neutrons</u> a comparable neutron flux with respect to the future neutron spallation sources e.g. at ESS
 but quasi monoenergetic MeV neutrons
- Radioactive (neutron-rich) ions potential gain of up to a factor 10⁴ in intensity with respect to e.g. ALTO

Novel paradigm for high brightness μ and ν sources: resonant photo-excitation of Δ resonances

The potential use of the Gamma Factory muon source:

- Muonium studies
- Lepton universality
- Rare muon decays
- Neutrino factory
- Muon-catalysed nuclear fusion
- Atomic physics studies of muonium atoms
- Electroweak studies with muon atoms
- Measuring nuclear radius and neutron skin
- Muon collider??? –

Conclusions and outlook

- Gamma Factory can create, at CERN, a variety of novel research tools, which could open novel research opportunities in a very broad domain of basic and applied science
- □ The Gamma Factory research programme can be largely based on the existing CERN accelerator infrastructure it requires "relatively" minor infrastructure investments
- Its "quest for diversity of research subjects and communities" is of particular importance in the present phase of accelerator-based research, as we neither have any solid theoretical guidance for a new physics "just around the corner", accessible by FCC, ILC, or CLIC, nor an established "reasonable cost" technology for a leap into very high energy " terra incognita"
- Gamma Factory project needs to make the last step in R&D studies and demonstrate its feasibility by the SPS GF-Proof-of-Principle experiment prior to reaching advanced phase of the HL-LHC programme – the CERN management and wide scientific community support for this project is a "sine qua non" condition for its further development