Optimization of in-gas laser spectroscopy setup at S³-LEB

LISA conference - 02/09/2024

Anjali Ajayakumar

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

Outline

•

GANIL- SPIRAL2 facility

- Aim to deliver high intensity primary beams from H to U (>1pµA)
- Delivery of beam to NFS in operation
- S3: Nuclear fusion evaporation to produce exotic nuclei

Super Separator Spectrometer (S³)

Super Separator Spectrometer (S³)

- Laser spectroscopy on the neutron deficient nuclei near the N=Z region and the heavy regions of the nuclide chart
- Mass measurements
- Decay spectroscopy
- Provide exotic beams for high precision measurements at DESIR

Ν

S³-LEB

In-gas laser ionization and spectroscopy

Gas cell

- **Broadening effects** ٠
- Broad band laser (GHz) ٠

de Laval nozzle

Hypersonic gas jet: ٠

$\rho \downarrow \& T \downarrow$

Narrow band laser (MHz) ٠

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 de Laval nozzle M=8 Distance from nozzle throat (mm) $\frac{Jet \ velocity \ (u)}{Speed \ of \ sound \ (a)}$ Buffer gas: Ar Mach number: M =gas cell 0.014 gas jet with M=8 Entrance window gas jet with M=1 Ti, Mylar gas jet with M=4 <u>0</u>0.010 1-5 µm foils $800.0^{\frac{1}{2}}$ **Dedicated test** 0.006 bench 0.004 ¹⁷⁰Fr 0.002

0.000

-1000 - 750 - 500

-250

Ó Velocity v_z (m/s)

250

500

750

1000

•

In-gas laser ionization and spectroscopy

•

Gas cell

- Broadening effects
- Broad band laser (GHz)

de Laval nozzle

• Hypersonic gas jet:

 $\rho\downarrow\&T\downarrow$

In-gas laser ionization and spectroscopy

Gas cell

- Broadening effects
- Broad band laser (GHz)

de Laval nozzle

• Hypersonic gas jet:

 $\rho \downarrow \& T \downarrow$

• Narrow band laser (MHz)

R. Ferrer et al., Nat. Comm. 8.14520 (2017)

R. Ferrer et al., Phy Rev. Res. 3, 043041 (2021)

OUTLINE

•

OFFLINE commissioning

Laser system for S³-LEB

Gas cell laser ionization:

- Broadband Ti:sa laser (1.5 - 2 GHz)

Gas jet laser ionization:

- Narrowband Injection locked laser (35 MHz)

laboratoire commun CEA/DRF

Titanium sapphire lasers installed at LPC

Er

CNRS/IN2P3

Ion transport towards PILGRIM

laboratoire commun CEA/DRF

CNRS/IN2P3

Ion transport towards PILGRIM

PILGRIM:MR-TOF-MS

Multi reflection time of flight spectrometer

• In trap lift method

Y. Balasmeh, Master Thesis (2022)

Pulse drift tube sections

• $M/\Delta M > 100000$ with alkali ion sources with BNG

Test with ^{170,166,168}Er ions

• M/ΔM ~ 80000

- Future: Active voltage stabilization optimization to reach M/ ΔM ~300000
- Buncher /PILGRIM optimization for transmission

PILGRIM: MR-TOF-MS

Laser spectroscopy with S³-LEB

- In-gas-cell laser spectroscopy
 - ✓ Spectral resolution
 - ✓ Pressure broadening studies
 - ✓ Collision effects
- In-gas-jet laser spectroscopy
 - ✓ Spectral resolution
 - ✓ Isotope shift and hyperfine parameters

•

✓ Gas jet characterization

In-gas cell laser spectroscopy

laboratoire commun CEA/DRI

A. Ajayakumar et al., NIMB 539, 102-107 (2023)

Resonance peak FWHM, $\Gamma_{coll} = 11(1)$ MHz/mbar

•

In-gas jet laser spectroscopy

laboratoire commun CEA/DRF

In-gas jet laser spectroscopy

•

[1] J. Romans et al., Nucl. Instrum. Meth. B 536 (2023) 72-81.

[2] W. J. Childs et al., Phys. Rev. A 28 (1983) 3402–3408.

[3] S. Ahmad et al., Proceedings of the "Symposium on Quantum Electronics" (1985).

Gas flow characterization

The local temperature of the gas jet:

• Used the transverse first-step laser configuration

$$\Delta v_{FWHM} = v_0 \sqrt{\frac{8kbT \ln 2}{mc^2}}$$

• Temperature of the jet T = 46(2) K

Stream velocity of the jet:

Measure Doppler shifted centroid

$$= \nu_0 \left(1 + \frac{u}{c} \right)$$

Deduced stream velocity of the jet u = 565(35) m/s

ν

Mach number:

For a measured spectral resolution: 280 MHz

• Deduced
$$M = \frac{\text{stream velocity } (u)}{\text{speed of sound}} = 4.5(3)$$

laboratoire commun CEA/DRF SPI A 2 CNRS/IN2P3

Expected Mach number: 8 Room for improved resolution! Pressure matching, laser alignment, power broadening

CNRS/IN2P3 laboratoire commun CEA/DRF

Possible reasons: 280 Er166 Er168 Er170 Flow matching : fine control of P_{cell}/P_{bg} 260 • Er100 under/over expansion A.I. 240 200 MHz Power broadening: • 396.7 nm 220 Very efficient transition scheme Misalignment of laser 200 • 415.2 nm 180 Laser 1, Er Gas Jet 20 40 60 80 Mach number Nozzle Er166 8.0 Laser 2 M~6.6 Er168 Mach number M 6.5 2.5 Er170 Er100 Motorized platforms Spectral resolution — 200 MHz 5.0 60 20 40 80 Distance from nozzle mm Thesis (F. Ivandikov)

Total FWHM

•

Summary

- First in gas cell/gas-jet laser spectroscopy performed
 - ✓ Laser systems implemented
 - ✓ Laser ion production and transmission
- Characterization of the gas cell, gas jet with laser ions performed
 - ✓ Spectral resolution
 - ✓ Isotope and hyperfine constants measured
- Entrance window and gas cell optimization tests performed and ready for commissioning cases
 - $\checkmark\,$ Ti and Mylar foils tested in dedicated testbench
- Laser developments:
 - $\checkmark\,$ Seed laser system constructed and lasing
 - ✓ Proof of principle measurements

S³-LEB is ready for online commissioning with Er!

Entrance Window tests

•

- Dedicated test bench for window tests
- Resistance and leak tests
- SRIM/TRIM calculation for four reactions covering the kinematics of S³

Er, Sn, Ac

Summary

- First in gas cell/gas-jet laser spectroscopy performed
 - ✓ Laser systems implemented
 - ✓ Laser ion production and transmission
- Characterization of the gas cell, gas jet with laser ions performed
 - ✓ Spectral resolution
 - ✓ Isotope and hyperfine constants measured
- Entrance window and gas cell optimization tests performed and ready for commissioning cases
 - $\checkmark\,$ Ti and Mylar foils tested in dedicated testbench
- Laser developments:
 - $\checkmark\,$ Seed laser system constructed and lasing
 - ✓ Proof of principle measurements

S³-LEB is ready for online commissioning with Er!

•

OUTLINE

Laser development

High resolution spectroscopy: Injection locked Ti: sapphire lasers

• Laser line width < 100 MHz

Alternative seed source: CW diode pumped Ti: sapphire laser system

ISA LISA conference

29

CNRS/IN2P3

laboratoire commun CEA/DRF

CW diode pumped Ti: sa laser

•

laboratoire commun CEA/DRF

Wavelength tunability : 300 nm Mode hop free scanning: 10- 50 GHz Narrow Linewidth: MHz Power :500 mW

V. Sonnenschein et al., NIMB 463 (2020)

CW diode pumped Ti: sapphire laser

Faraday rotator

•

108

106

ME 104 Jane 102

100

98

0

Cavity lasing

10

Single mode

operation

20

Out of plane

geometry

Time minutes

30

Active

stabilization

and tuning

Unidirection

operation

CW diode pumped Ti: sa laser

laboratoire commun CEA/DRF SDIG 2 CNRS/IN2P3

Beam propagation ratio, $M^2 \sim 1$ (ideal Gaussian beam)

Am laser spectroscopy with RISIKO

centroid centroid _____ 1.0 1.0 Atomic theory Atomic theory Am 241 Am 243 0.8 0.8 Counts (a.u.) 9.0 Counts (a.u,) 6 0 0 0.2 0.2 0.0 0.0 -2000-1500-1000-500500 1000 Ó 2500 3000 3500 4500 5000 4000 5500 First step laser frequency detuning (MHz) First step laser frequency detuning (MHz) FWHM (MHz) A.L A_{II} (MHz) Am isotopes A_I (MHz) B_I (MHz) **B**.. (MHz) ²⁴¹ Am 136(6) 399.467 nm -16.6(5)-100.7(4)-2118(7) 49(2) ²⁴³ Am -2139(10)-16.6(7)99.5(6) 121(11) 46(2) ²⁴¹ Am[1] -17.144(8)123.82(10) 426.676 nm -²⁴³ Am[2] -17.1437(28)123.8477(323) -Am (I=5/2) [1] J. Blaize et al., Tables Internationale de constants(1992) M. Stemmler (JGU Mainz) [2] R Marrus et al., Phy. Rev 120.4 (1960)

•

33

CNRS/IN2P3

laboratoire commun CEA/DRF

Thank you

Acknowledgement

GANIL:

Dieter Ackermann; Lucia Caceres; Samuel Damoy; Pierre Delahaye; Patrice Gangnant; Nathalie Lecesne; Thierry Lefrou; Renan Leroy; Franck Lutton; Alejandro Ortiz; Benoit Osmond; Julien Piot; Blaise-Maël Retailleau; Hervé Savajols; Gilles Sénécal

LPC:

Frédéric Boumard; Jean-François Cam; Philippe Desrues; Xavier Fléchard; Julien Lory; Yvan Merrer; Christophe Vandamme

IJCLab:

Wenling Dong; Patricia Duchesne; Serge Franchoo; Vladimir Manea; Olivier Pochon

KU Leuven:

Arno Claessens; Rafael Ferrer; Mark Huyse; Fedor Ivandikov; Sandro Kraemer; Yuri Kudriavtsev;

Jekabs Romans; Simon Sels; Paul Van den Bergh; Piet Van Duppen; Matthias Verlinde ; Elise Verstraelen

<u>JGU:</u>

Sebastian Raeder; Dominik Studer; Klaus Wendt

<u>JYU:</u>

Ruben de Groote; Iain David Moore; Michael Reponen; Juha Uusitalo

<u>IPHC:</u>

Emil Traykov

IRFU:

Martial Authier; Olivier Cloue; Antoine Drouard; Thomas Goigoux; Emmanuel Rey-Herme; Damien Thisse; Marine Vandebrouck

and the RESIST network in ENSAR2

•

