The heaviest ever heavy element? Lawrencium

LISA Conference 2024 Geneva

J. S. Andrews ¹ J. Grumer² S. Fritzsche¹ A. Bondaraev¹ P. Jönsson ³ J. Bieroń⁴

 1 Helmholtz-Institut Jena, Germany 2 Uppsala Universitet, Sweden 3 Malmö Universitet, Sweden 4 Uniwersytet Jagielloński, Poland

2 September 2024

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

[Introduction](#page-2-0) [Experiment](#page-7-0) [Theory](#page-8-0) [Methods](#page-11-0) [Results](#page-16-0) [Conclusion](#page-21-0)

Table of Contents

[Methods](#page-11-0) [Results](#page-16-0) [Conclusion](#page-21-0)

[Introduction](#page-2-0) [Experiment](#page-7-0) [Theory](#page-8-0) [Methods](#page-11-0) [Results](#page-16-0) [Conclusion](#page-21-0)

 \sqrt{N}

Heaviest ever heavy element?

 \bullet

Island of stability

- We are interested in searching for the island of stability, defining new frontiers in nuclear physics¹
- This can be done by testing nuclear models by investigating the hyperfine structure
- But. . . we need to confirm the broad structure first!

¹M. Block et al., [Progress in Particle and Nuclear Physics](https://doi.org/10.1016/j.ppnp.2020.103834) 116, 103834 (2021).

Lr and the actinides

LISA

Applications

The main scientific motivation to study Lr is driven by an interest in the study of nuclear, relativistic effects and electron correlations. These strongly influence the atomic structure.

 2 B. J. B. Nelson et al., [Pharmaceutics](https://doi.org/10.3390/pharmaceutics13010049) 13, 49 (2020).

Applications

The main scientific motivation to study Lr is driven by an interest in the study of nuclear, relativistic effects and electron correlations. These strongly influence the atomic structure.

- Nuclear medicine is a rapidly emerging field.²
- Targeted alpha therapy (TAT)
- α emitting radionuclides attached to targeting vectors to treat various diseases.

 2 B. J. B. Nelson et al., [Pharmaceutics](https://doi.org/10.3390/pharmaceutics13010049) 13, 49 (2020).

[Introduction](#page-2-0) **[Experiment](#page-7-0)** [Theory](#page-8-0) [Methods](#page-11-0) [Results](#page-16-0) [Conclusion](#page-21-0)

Experimental setup

³J. Warbinek et al., Atoms 10[, 41 \(2022\).](https://doi.org/10.3390/atoms10020041)

Hartree-Fock

The energy levels can be obtained by solving the eigenvalue problem

$$
\hat{H}\Psi = E\Psi \tag{1}
$$

The HF wavefunction is modelled as a single Slater determinant

Observed and HF ionisation potientials for neutral atoms [eV]

Hartree-Fock

$$
\hat{H}\Psi = E\Psi \tag{1}
$$

The HF wavefunction is modelled as a single Slater determinant

Observed and HF ionisation potientials for neutral atoms [eV]

• HF is a mean-field theory and does not fully consider electron-electron interactions

[Introduction](#page-2-0) [Experiment](#page-7-0) [Theory](#page-8-0) [Methods](#page-11-0) [Results](#page-16-0) [Conclusion](#page-21-0)

MCDHF

Electron correlation is defined by

$$
E_{corr} = E_{exact} - E_{HF} \tag{2}
$$

To account for electron correlation, additional electronic configurations are included In multi-configurational Dirac-Hartree Fock (MCDHF), a wavefunction is created by a linear combination of

configuration state functions (CSFs)

$$
\Psi\left(\gamma \pi J M\right) = \sum_{i=1}^{N_{\text{CSFs}}} c_i \psi_i \left(\gamma_i \pi J M\right) \tag{3}
$$

where π , J, M, γ_i is the parity, total angular momentum and magnetic quantum number. γ_i describes other numbers needed to uniquely describe the CSF.

- A CSF is a symmetry adapted linear combination of Slater determinants
- The Dirac-Colomb Hamiltonian is used.
- Breit interaction and further QED effects are added perturbationally

Types of correlation

Two mains types of electron correlation have to be considered:

- Static correlation Caused by degenerate HF energies
- Dynamic correlation Arises from correlation of electron motions due to the repulsive Coulomb interaction

Static correlation - consider single-double-triple (SDT) substitutions or a multireference (MR) & Layzer complex

Dynamic correlation is harder. . . Introduce correlation orbitals

- The correlation orbitals should overlap with the valence orbitals
- Core orbitals close to the valence will affect energy separations
- 1 Stage One (DHF) Create wavefunction with DHF

- The correlation orbitals should overlap with the valence orbitals
- Core orbitals close to the valence will affect energy separations
- 1 Stage One (DHF) Create wavefunction with DHF
- 2 *Stage Two* (VV) Add correlation orbitals by increasing the maximum principal quantum number by one. (One layer)

- The correlation orbitals should overlap with the valence orbitals
- Core orbitals close to the valence will affect energy separations
- 1 Stage One (DHF) Create wavefunction with DHF
- 2 Stage Two (VV) Add correlation orbitals by increasing the maximum principal quantum number by one. (One layer)
- 3 Stage Three (6sp/5sp) Use the relativistic configuration interaction (RCI) to include effects from $\{6s, 6p\}$ subshells. Higher-order relativistic effects, such as the transverse photon interaction and leading QED corrections.

- The correlation orbitals should overlap with the valence orbitals
- Core orbitals close to the valence will affect energy separations
- 1 Stage One (DHF) Create wavefunction with DHF
- 2 *Stage Two* (VV) Add correlation orbitals by increasing the maximum principal quantum number by one. (One layer)
- $Staae$ Three $(6s_D/5s_D)$ Use the relativistic configuration interaction (RCI) to include effects from $\{6s, 6p\}$ subshells. Higher-order relativistic effects, such as the transverse photon interaction and leading QED corrections.
- 4 Stage Four (5df/4df) Use RCI to include effects from $\{6s, 6p, 5d, 5f\}$ subshells. Include leading corrections as before

Graphical representation of transitions for Lu I and Lr I $6s^27s^2S_0 \rightarrow 6s^26p^3P_{1/2}$ $7s^28s~^2S_0 \rightarrow 7s^27p~^3P_{1/2}$

[Introduction](#page-2-0) **[Experiment](#page-7-0)** [Theory](#page-8-0) [Methods](#page-11-0) [Results](#page-16-0) [Conclusion](#page-21-0)

Lu I and Lr I transition energies

⁴A. Kramida and Y. Ralchenko, NIST Atomic Spectra Database, NIST Reference Database 78, 1999.

Transition rates

Transition rates

- $E_{\text{Total}} = E_{\text{Static}} + E_{\text{Dynamic}}$
- Assuming uncertainties are independent and random:
- $\delta E_{\text{Total}} = \sqrt{(\delta E)^2_{\text{Static}} + (\delta E)^2_{\text{Dynamic}}}$

Comparison with previous theory

E. V. Kahl et al., [Physical Review A](https://doi.org/10.1103/PhysRevA.104.052810) 104, 052810 (2021).

- A. Borschevsky et al., [The European Physical Journal D](https://doi.org/10.1140/epjd/e2007-00130-9) 45, 115 (2007).
- V. A. Dzuba et al., [Physical Review A](https://doi.org/10.1103/PhysRevA.90.012504) 90, 012504 (2014).
- S. Fritzsche et al., [The European Physical Journal D](https://doi.org/10.1140/epjd/e2007-00136-3) 45, 107 (2007).
- Y. Zou and C. Froese Fischer, [Physical Review Letters](https://doi.org/10.1103/PhysRevLett.88.183001) 88, 183001 (2002).

Summary

- Calculations were performed on Lu I and Lr I with good agreement with NIST and previous theory.
- Not properly including static correlation leads to a contracting effect of the separations

- $7s^28s \rightarrow 7s^27p = 20736 \pm 560$ cm⁻¹
- $7s^27d \rightarrow 7s^27p = 28607 \pm 672 \text{cm}^{-1}$.

Ab-initio multiconfigurational calculations of experimentally significant energy levels and transition rates in Lr I ($Z = 103$)

J. S. Andrews,^{1,2} J. Grumer,³ S. Fritzsche,^{1,2,4} A. Bondarev,^{2,4} P. Jönsson,⁵ and J. Bieron⁶

¹Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität, 07743 Jena, Germany ${}^{2}Helmholtz-Institut$ Jena, 07743 Jena, Germany ³Theoretical Astrophysics, Uppsala University, Uppsala, Sweden ⁴GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany ⁵Malmö University, Malmö, Sweden

Summary

• Calculations were performed on Lu I and Lr I with good agreement with NIST and previous theory.

- $7s^28s \rightarrow 7s^27p = 20736 \pm 560$ cm⁻¹
- $7s^27d \rightarrow 7s^27p = 28607 \pm 672 \text{cm}^{-1}$.

• Not properly including static correlation leads to a contracting effect of the separations

Lr I Outlook

- Further calculations could variationally incorporate static and dynamic correlation.
- To do this, new technologies would be needed such as non-orthogonal orbital sets or machine learning
- Hyperfine splittings of Lr I

Ab-initio multiconfigurational calculations of experimentally significant energy levels and transition rates in Lr I ($Z = 103$)

J. S. Andrews,^{1,2} J. Grumer,³ S. Fritzsche,^{1,2,4} A. Bondarev,^{2,4} P. Jönsson,⁵ and J. Bieron⁶

¹Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität, 07743 Jena, Germany ${}^{2}Helmholtz-Institut$ Jena, 07743 Jena, Germany ³Theoretical Astrophysics, Uppsala University, Uppsala, Sweden ⁴GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany ⁵Malmö University, Malmö, Sweden

Thank you for listening!

