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Island of stability

• We are interested in searching for the island of
stability, defining new frontiers in nuclear physics1

• This can be done by testing nuclear models by
investigating the hyperfine structure

• But. . . we need to confirm the broad structure
first!

1M. Block et al., Progress in Particle and Nuclear Physics 116, 103834 (2021).
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Lr and the actinides
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Applications

The main scientific motivation to study Lr is driven by
an interest in the study of nuclear, relativistic effects
and electron correlations. These strongly influence the
atomic structure.

• Nuclear medicine is a rapidly emerging field.2

• Targeted alpha therapy (TAT)

• α− emitting radionuclides attached to targeting
vectors to treat various diseases.

2B. J. B. Nelson et al., Pharmaceutics 13, 49 (2020).
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Experimental setup

3J. Warbinek et al., Atoms 10, 41 (2022).
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Hartree-Fock

The energy levels can be obtained by solving the
eigenvalue problem

ĤΨ = EΨ (1)

The HF wavefunction is modelled as a single Slater
determinant

• HF usually does not agree with experiment

• HF is a mean-field theory and does not fully
consider electron-electron interactions
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MCDHF

Electron correlation is defined by

Ecorr = Eexact − EHF (2)

To account for electron correlation, additional
electronic configurations are included
In multi-configurational Dirac-Hartree Fock (MCDHF),
a wavefunction is created by a linear combination of

configuration state functions (CSFs)

Ψ(γπJM) =

NCSFs∑
i=1

ciψi (γiπJM) (3)

where π, J, M , γi is the parity, total angular
momentum and magnetic quantum number. γi
describes other numbers needed to uniquely describe
the CSF.

• A CSF is a symmetry adapted linear combination
of Slater determinants

• The Dirac-Colomb Hamiltonian is used.

• Breit interaction and further QED effects are
added perturbationally
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Types of correlation

Two mains types of electron correlation have to be
considered:

• Static correlation - Caused by degenerate HF
energies

• Dynamic correlation - Arises from correlation
of electron motions due to the repulsive Coulomb
interaction

Static correlation - consider single-double-triple (SDT)
substitutions or a multireference (MR) & Layzer
complex
Dynamic correlation is harder. . . Introduce correlation
orbitals
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Core correlation

Core effects in Lr are strong, due to the ground state
having a lone electron [Rn] 5f147s27p

• The correlation orbitals should overlap with the
valence orbitals

• Core orbitals close to the valence will affect
energy separations

1 Stage One (DHF) - Create wavefunction with
DHF

2 Stage Two (VV) - Add correlation orbitals by
increasing the maximum principal quantum
number by one. (One layer)

3 Stage Three (6sp/5sp) - Use the relativistic
configuration interaction (RCI) to include effects
from {6s, 6p} subshells. Higher-order relativistic
effects, such as the transverse photon interaction
and leading QED corrections.

4 Stage Four (5df/4df) - Use RCI to include effects
from {6s, 6p, 5d, 5f} subshells. Include leading
corrections as before

LISA Conference 2024 | Geneva 9/14
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Graphical representation of transitions for Lu I and Lr I
6s27s 2S0 → 6s26p 3P1/2

7s28s 2S0 → 7s27p 3P1/2
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Lu I and Lr I transition energies

Levels Energy [ cm−1 ]
Element JP Conf Method Two Method Three MR Method Four + Static NIST4

Lu 3/2+ 6s25d 0 0 0 0 0 0
Lu 5/2+ 6s25d 590 1695 1619 1778 1702 1993
Lu 1/2− 6s26p 1334 3548 2358 3864 3864 4136
Lu 3/2− 6s26p 3765 6866 5686 7220 7230 7476
Lu 1/2+ 6s27s 21353 23023 23523 23717 24217 24125
Lr 1/2− 7s27p 0 0 0 0 0 -
Lr 3/2+ 7s26d 4907 3145 4853 - - -
Lr 5/2+ 7s26d 7106 6047 7763 - - -
Lr 3/2− 7s27p 8133 8283 8540 8223 8480 -
Lr 1/2+ 7s28s 20658 19930 22003 20351 20736 -
Lr 3/2+ 7s27d 28543 27700 29922 28073 28607 -
Lr 5/2+ 7s27d 28694 27949 30166 28277 28806 -

4A. Kramida and Y. Ralchenko, NIST Atomic Spectra Database, NIST Reference Database 78, 1999.
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Transition rates

Upper levels Lower levels Einstein A coefficent [ s−1 ]
Element JP Conf JP Conf Two Three Four MR NIST4

Lu 1/2+ 6s27s 1/2− 6s26p 3.1 × 107 4.1 × 107 4.2 × 107 3.2 × 107 3.2 × 107

Lu 1/2+ 6s27s 3/2− 6s26p 5.2 × 107 6.9 × 107 7.2 × 107 5.4 × 107 4.9 × 107

Upper levels Lower levels Einstein A coefficent [ s−1 ]
Element JP Conf JP Conf Two Three Four MR MBPT +CI5

Lr 1/2+ 7s28s 1/2− 7s27p 3.1 × 107 3.4 × 107 3.3 × 107 3.3 × 107 3.5 × 107

Lr 3/2+ 7s27d 1/2− 7s27p 5.0 × 107 4.9 × 107 4.6 × 107 3.9 × 107 6.1 × 107

Lr 1/2+ 7s28s 3/2− 7s27p 3.3 × 107 3.3 × 107 3.3 × 107 2.8 × 107 3.3 × 107

Lr 3/2+ 7s27d 3/2− 7s27p 9.5 × 106 9.8 × 106 9.7 × 106 6.9 × 106 1.2 × 107

Lr 5/2+ 7s27d 3/2− 7s27p 3.6 × 107 5.2 × 107 5.1 × 107 3.9 × 107 5.3 × 107

• ETotal = EStatic + EDynamic

• Assuming uncertainties are independent and random:

• δETotal =
√

(δE)2Static + (δE)2Dynamic
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Comparison with previous theory

Levels Energy [ cm−1 ]
JP Conf Our work MBPT + CI5 RCCSD5 FSCC6 CI + all order7 MCDHF8 MCDHF9

1/2− 7s27p 0 0 0 0 0 0 0
3/2− 7s27p 8480 8606 8677 8413 8495 8138 7807
1/2+ 7s28s 20736 20485 20533 20118 20253 20405 -
3/2+ 7s27d 28607 28580 - 28118 - - -
5/2+ 7s27d 28806 28725 - 28385 - - -

5E. V. Kahl et al., Physical Review A 104, 052810 (2021).
6A. Borschevsky et al., The European Physical Journal D 45, 115 (2007).
7V. A. Dzuba et al., Physical Review A 90, 012504 (2014).
8S. Fritzsche et al., The European Physical Journal D 45, 107 (2007).
9Y. Zou and C. Froese Fischer, Physical Review Letters 88, 183001 (2002).
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Summary

• Calculations were performed on Lu I and Lr I with
good agreement with NIST and previous theory.

• 7s28s → 7s27p = 20736 ± 560cm−1

• 7s27d → 7s27p = 28607 ± 672cm−1.

• Not properly including static correlation leads to
a contracting effect of the separations

Lr I Outlook
• Further calculations could variationally

incorporate static and dynamic correlation.
• To do this, new technologies would be needed such

as non-orthogonal orbital sets or machine learning
• Hyperfine splittings of Lr I
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Thank you for listening!
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