The heaviest ever heavy element? Lawrencium

LISA Conference 2024 Geneva

J. S. Andrews ¹ J. Grumer² S. Fritzsche ¹ A. Bondaraev¹ P. Jönsson ³ J. Bieroń⁴

> ¹Helmholtz-Institut Jena, Germany ²Uppsala Universitet, Sweden ³Malmö Universitet, Sweden ⁴Universytet Jagielloński, Poland

> > 2 September 2024

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

Experiment O

Theory 00 Methods 00 Results 0000 Conclusion O

Table of Contents

4 Methods5 Results6 Conclusion

Introduction \bullet 000

Theory 00 Methods

Results 0000 Conclusion O

Heaviest ever heavy element?

1 H Hydrogen					1	Ato	mic Nur	nber									He
3 Li Liliuun Autome	4 Be Nervilier			н	H	S	ym	bol				6 B Bener	6 C Catal	7 N N N N N	8 O Origina Linear	9 F Poor lee Parget	10 Ne Ne
11 Na Malan	¹² Mg			N	onmetal	Che	mical Gro	up Block				13 AI 	14 Si Miller	15 P Phosphone bornet	16 S	17 CI Otherina Internet	18 Ar Arpan Man Car
19 K	20 Ca cation	SC SC Manufactor	22 Ti Transum Transum	23 V	24 Cr Oroanian Transition	25 Mn	26 Fe	27 Co Co Co Co Co Co Co Co	28 Ni Mithei Tuurise Mar	29 Cu 0.00000	30 Zn 2145	Ga balliun	32 Ge	AS	34 Se	35 Br	36 Kr 5/1000
Bb Rb	38 Sr	39 Y	40 Zr	11 Nb	42 Mo	43 TC heteretere	Ru	Rh Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53	54 Xe
55 Cs	56 Ba	•	72 Hf	73 Ta	74 W Tangatan	75 Re	76 OS 0000	77 Ir	78 Pt	79 Au	BO Hg	81 TI Turilun	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr Franklass	Ra Ra	ŗ	104 Rf	105 Db	106 Sg	Bh	108 Hs	109 Mt	110 DS	Rg	112 Cn Experiescent Composition	113 Nh	114 FI	115 Mc	116 LV	117 Ts	118 Og
Supe elem	rheav ents	у.	57 La	68 Ce	59 Pr Praseodystum Lantania	60 Nd	61 Pm Posted Muse	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy Dyupoteter	67 Ho	68 Er	59 Tm	70 Yb	71 Lu Laterbare
Heav elem	y ents <mark>–</mark>		89 Ac	90 Th	91 Pa	92 U Uranium	93 Np	94 Pu Parantari	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 NO	103 Lr

Methods 00 Results 0000 Conclusion O

Island of stability

- We are interested in searching for the island of stability, defining new frontiers in nuclear physics¹
- This can be done by testing nuclear models by investigating the hyperfine structure
- But...we need to confirm the broad structure first!

¹M. Block et al., Progress in Particle and Nuclear Physics **116**, 103834 (2021).

2/14

Theory 00 Methods 00 Results 0000 Conclusion O

Lr and the actinides

Lr I Significant Transitions 30000-7s²7d 7s²7d 25000-20000-7s²8s 15000cm⁻¹ 10000-7s²7p 5000-7s²6d 75²6d 7s²7p 1/2 5/2

LİSA

LISA Conference 2024 | Geneva

٠

Theory 00

•

Methods 00 Results 0000 Conclusior O

Applications

The main scientific motivation to study Lr is driven by an interest in the study of nuclear, relativistic effects and electron correlations. These strongly influence the atomic structure.

²B. J. B. Nelson et al., Pharmaceutics **13**, 49 (2020).

Theory 00 Methods 00 Results 0000 Conclusior O

Applications

The main scientific motivation to study Lr is driven by an interest in the study of nuclear, relativistic effects and electron correlations. These strongly influence the atomic structure.

- Nuclear medicine is a rapidly emerging field.²
- Targeted alpha therapy (TAT)
- α emitting radionuclides attached to targeting vectors to treat various diseases.

²B. J. B. Nelson et al., Pharmaceutics **13**, 49 (2020).

Experiment

Theory 00 Methods 00 $\substack{\text{Results}\\0000}$

Conclusion O

Experimental setup

³J. Warbinek et al., Atoms **10**, 41 (2022).

Theory

Methods

Results 0000 Conclusio O

Hartree-Fock

The energy levels can be obtained by solving the eigenvalue problem

$$\hat{H}\Psi = E\Psi \tag{1}$$

The HF wavefunction is modelled as a single Slater determinant

Atom	Obs.	HF	Diff.
n = 2 shell			
Li	5.39	5.34	0.05
Be	9.32	8.42	0.90
В	8.30	8.43	-0.13
С	11.26	11.79	-0.53
N	14.53	15.44	-0.91
0	13.62	14.45	-0.85
F	17.42	18.62	-1.20
Ne	21.56	23.14	-1.58

Observed and HF ionisation potientials for neutral atoms [eV]

Theory •0 Methods 00 $\substack{\text{Results}\\0000}$

Conclusion O

Hartree-Fock

$$\hat{H}\Psi = E\Psi \tag{1}$$

The HF wavefunction is modelled as a single Slater determinant

Atom	Obs.	HF	Diff.
n = 2 shell			
Li	5.39	5.34	0.05
Be	9.32	8.42	0.90
В	8.30	8.43	-0.13
С	11.26	11.79	-0.53
N	14.53	15.44	-0.91
0	13.62	14.45	-0.85
F	17.42	18.62	-1.20
Ne	21.56	23.14	-1.58

Observed and HF ionisation potientials for neutral atoms [eV]

• HF is a mean-field theory and does not fully consider electron-electron interactions

Experiment

Theory

Methods 00 Results 0000 Conclusion O

MCDHF

Electron correlation is defined by

$$E_{corr} = E_{exact} - E_{HF} \tag{2}$$

To account for electron correlation, additional electronic configurations are included In multi-configurational Dirac-Hartree Fock (MCDHF), a wavefunction is created by a linear combination of configuration state functions (CSFs)

$$\Psi\left(\gamma\pi JM\right) = \sum_{i=1}^{N_{\rm CSFs}} c_i \psi_i \left(\gamma_i \pi JM\right) \tag{3}$$

where π , J, M, γ_i is the parity, total angular momentum and magnetic quantum number. γ_i describes other numbers needed to uniquely describe the CSF.

- A CSF is a symmetry adapted linear combination of Slater determinants
- The Dirac-Colomb Hamiltonian is used.
- Breit interaction and further QED effects are added perturbationally

Methods •0 Conclusion O

Types of correlation

Two mains types of electron correlation have to be considered:

- Static correlation Caused by degenerate HF energies
- Dynamic correlation Arises from correlation of electron motions due to the repulsive Coulomb interaction

Static correlation - consider single-double-triple (SDT) substitutions or a multireference (MR) & Layzer complex

Dynamic correlation is harder... Introduce correlation orbitals

Theory 00 Methods ○● Results 0000 Conclusion O

Core correlation

Core effects in Lr are strong, due to the ground state having a lone electron [Rn] $5f^{14}7s^27p$

- The correlation orbitals should overlap with the valence orbitals
- Core orbitals close to the valence will affect energy separations
- 0 Stage One (DHF) Create wavefunction with DHF

Theory 00 Methods

Results 0000 Conclusion O

9/14

Core correlation

Core effects in Lr are strong, due to the ground state having a lone electron [Rn] $5f^{14}7s^27p$

- The correlation orbitals should overlap with the valence orbitals
- Core orbitals close to the valence will affect energy separations
- **1** Stage One (DHF) Create wavefunction with DHF
- 2 Stage Two (VV) Add correlation orbitals by increasing the maximum principal quantum number by one. (One layer)

Methods

Results 0000 Conclusion O

9/14

Core correlation

Core effects in Lr are strong, due to the ground state having a lone electron [Rn] $5f^{14}7s^27p$

- The correlation orbitals should overlap with the valence orbitals
- Core orbitals close to the valence will affect energy separations
- **1** Stage One (DHF) Create wavefunction with DHF
- 2 Stage Two (VV) Add correlation orbitals by increasing the maximum principal quantum number by one. (One layer)
- Stage Three (6sp/5sp) Use the relativistic configuration interaction (RCI) to include effects from {6s, 6p} subshells. Higher-order relativistic effects, such as the transverse photon interaction and leading QED corrections.

Methods

Results 0000 Conclusior O

Core correlation

Core effects in Lr are strong, due to the ground state having a lone electron [Rn] $5f^{14}7s^27p$

- The correlation orbitals should overlap with the valence orbitals
- Core orbitals close to the valence will affect energy separations
- **1** Stage One (DHF) Create wavefunction with DHF
- 2 Stage Two (VV) Add correlation orbitals by increasing the maximum principal quantum number by one. (One layer)
- Stage Three (6sp/5sp) Use the relativistic configuration interaction (RCI) to include effects from {6s, 6p} subshells. Higher-order relativistic effects, such as the transverse photon interaction and leading QED corrections.
- Istage Four (5df/4df) Use RCI to include effects from {6s, 6p, 5d, 5f} subshells. Include leading corrections as before

Theory 00 Methods 00 Results

Conclusion O

10/14

Graphical representation of transitions for Lu I and Lr I $_{5s^27s\ ^2S_0\ \rightarrow\ 6s^26p\ ^3P_{1/2}}_{7s^28s\ ^2S_0\ \rightarrow\ 7s^27p\ ^3P_{1/2}}$

Theory 00 Methods 00 Results 0●00 Conclusion O

Lu I and Lr I transition energies

	Levels			E	Energy [c	m^{-1}]		
Element	J^P	Conf	Method Two	Method Three	MR	Method Four	+ Static	$\rm NIST^4$
Lu	$3/2^{+}$	$6s^{2}5d$	0	0	0	0	0	0
Lu	$5/2^{+}$	$6s^{2}5d$	590	1695	1619	1778	1702	1993
Lu	$1/2^{-}$	$6s^26p$	1334	3548	2358	3864	3864	4136
Lu	$3/2^{-}$	$6s^{2}6p$	3765	6866	5686	7220	7230	7476
Lu	$1/2^{+}$	$6s^27s$	21353	23023	23523	23717	24217	24125
Lr	$1/2^{-}$	$7s^27p$	0	0	0	0	0	-
\mathbf{Lr}	$3/2^{+}$	$7s^26d$	4907	3145	4853	-	-	-
\mathbf{Lr}	$5/2^{+}$	$7s^26d$	7106	6047	7763	-	-	-
\mathbf{Lr}	$3/2^{-}$	$7s^27p$	8133	8283	8540	8223	8480	-
\mathbf{Lr}	$1/2^{+}$	$7s^{2}8s$	20658	19930	22003	20351	20736	-
\mathbf{Lr}	$3/2^{+}$	$7s^27d$	28543	27700	29922	28073	28607	-
Lr	$5/2^{+}$	$7s^27d$	28694	27949	30166	28277	28806	-

⁴A. Kramida and Y. Ralchenko, NIST Atomic Spectra Database, NIST Reference Database 78, 1999.

Introd	uction
0000	

Methods 00

Transition rates

	Upper levels		Lower levels		Einstein A coefficent $[s^{-1}]$						
Element	J^P	Conf	J^P	Conf	Two	Three	Four	\mathbf{MR}	NIST^4		
Lu	$1/2^{+}$	$6s^{2}7s$	$1/2^{-}$	$6s^26p$	3.1×10^7	4.1×10^7	4.2×10^7	3.2×10^7	3.2×10^7		
Lu	$1/2^{+}$	$6s^27s$	$3/2^{-}$	$6s^26p$	5.2×10^7	6.9×10^7	7.2×10^7	5.4×10^7	4.9×10^7		
	Upper levels		Lower levels			Einstein A coefficent $[s^{-1}]$					
Element	J^P	Conf	J^P	Conf	Two	Three	Four	\mathbf{MR}	$MBPT + CI^5$		
Lr	$1/2^{+}$	$7s^{2}8s$	$1/2^{-}$	$7s^27p$	3.1×10^7	3.4×10^7	3.3×10^7	3.3×10^7	3.5×10^7		
\mathbf{Lr}	$3/2^{+}$	$7s^27d$	$1/2^{-}$	$7s^27p$	5.0×10^7	4.9×10^7	4.6×10^7	3.9×10^7	6.1×10^7		
\mathbf{Lr}	$1/2^{+}$	$7s^{2}8s$	$3/2^{-}$	$7s^{2}7p$	3.3×10^7	3.3×10^7	3.3×10^7	2.8×10^7	$3.3 imes 10^7$		
\mathbf{Lr}	$3/2^{+}$	$7s^27d$	$3/2^{-}$	$7s^{2}7p$	9.5×10^{6}	9.8×10^6	9.7×10^6	6.9×10^{6}	1.2×10^7		
Lr	$5/2^{+}$	$7s^27d$	$3/2^{-}$	$7s^27p$	3.6×10^7	5.2×10^7	5.1×10^7	3.9×10^7	5.3×10^7		

Intro	du	ct	io	n
0000)			

Methods 00

12/14

Transition rates

	Upper	r levels	Lower levels		Einstein A coefficent $[s^{-1}]$						
Element	J^P	Conf	J^P	Conf	Two	Three	Four	\mathbf{MR}	$\rm NIST^4$		
Lu	$1/2^{+}$	$6s^{2}7s$	$1/2^{-}$	$6s^26p$	3.1×10^{7}	4.1×10^7	4.2×10^7	3.2×10^7	3.2×10^7		
Lu	$1/2^{+}$	$6s^{2}7s$	$3/2^{-}$	$6s^26p$	5.2×10^7	6.9×10^7	7.2×10^7	5.4×10^7	4.9×10^7		
	Upper levels		Lower levels			Einstein A coefficent $[s^{-1}]$					
Element	J^{P}	Conf	J^P	Conf	Two	Three	Four	MR	$MBPT + CI^5$		
Lr	$1/2^{+}$	$7s^{2}8s$	$1/2^{-}$	$7s^27p$	3.1×10^{7}	3.4×10^7	3.3×10^7	3.3×10^7	3.5×10^7		
\mathbf{Lr}	$3/2^{+}$	$7s^27d$	$1/2^{-}$	$7s^27p$	5.0×10^7	4.9×10^7	4.6×10^7	3.9×10^7	6.1×10^7		
\mathbf{Lr}	$1/2^{+}$	$7s^{2}8s$	$3/2^{-}$	$7s^{2}7p$	3.3×10^7	3.3×10^7	3.3×10^7	2.8×10^7	3.3×10^7		
\mathbf{Lr}	$3/2^{+}$	$7s^27d$	$3/2^{-}$	$7s^{2}7p$	9.5×10^{6}	9.8×10^6	9.7×10^6	6.9×10^{6}	1.2×10^7		
Lr	$5/2^+$	$7s^27d$	$3/2^{-}$	$7s^27p$	3.6×10^7	5.2×10^7	5.1×10^7	3.9×10^7	5.3×10^7		

- $E_{\text{Total}} = E_{\text{Static}} + E_{\text{Dynamic}}$
- Assuming uncertainties are independent and random:
- $\delta E_{\text{Total}} = \sqrt{(\delta E)^2_{\text{Static}} + (\delta E)^2_{\text{Dynamic}}}$

Methods 00 $\begin{array}{c} \text{Results} \\ \text{000} \bullet \end{array}$

Conclusion O

Comparison with previous theory

Le	vels			E	nergy [cm	-1		
J^P	Conf	Our work	$MBPT + CI^5$	RCCSD^5	$FSCC^6$	$\dot{\mathrm{CI}}$ + all order ⁷	MCDHF^{8}	MCDHF^9
$1/2^{-}$	$7s^27p$	0	0	0	0	0	0	0
$3/2^{-}$	$7s^27p$	8480	8606	8677	8413	8495	8138	7807
$1/2^{+}$	$7s^{2}8s$	20736	20485	20533	20118	20253	20405	-
$3/2^{+}$	$7s^27d$	28607	28580	-	28118	-	-	-
$5/2^{+}$	$7s^27d$	28806	28725	-	28385	-	-	-

⁵E. V. Kahl et al., Physical Review A 104, 052810 (2021).
⁶A. Borschevsky et al., The European Physical Journal D 45, 115 (2007).
⁷V. A. Dzuba et al., Physical Review A 90, 012504 (2014).
⁸S. Fritzsche et al., The European Physical Journal D 45, 107 (2007).
⁹Y. Zou and C. Froese Fischer, Physical Review Letters 88, 183001 (2002).

Introduction	Experiment	Theory	Methods	Results	Conclusion
0000	O	00	00	0000	
Summary					

- Calculations were performed on Lu I and Lr I with good agreement with NIST and previous theory.
- Not properly including static correlation leads to a contracting effect of the separations

14/14

- $7s^2 8s \rightarrow 7s^2 7p = 20736 \pm 560 \text{cm}^{-1}$
- $7s^27d \rightarrow 7s^27p = 28607 \pm 672 \text{cm}^{-1}$.

Ab-initio multiconfigurational calculations of experimentally significant energy levels and transition rates in Lr I (Z = 103)

J. S. Andrews,^{1, 2} J. Grumer,³ S. Fritzsche,^{1, 2, 4} A. Bondarev,^{2, 4} P. Jönsson,⁵ and J. Bieroń⁶

 ¹ Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität, 07743 Jena, Germany ² Helmholtz-Institut Jena, 07743 Jena, Germany ³ Theoretical Astrophysics, Uppsala University, Uppsala, Sweden
 ⁴ GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany ⁶ Mahrö University, Mahrö, Sweden

Introduct	ion
0000	

14/14

Summary

• Calculations were performed on Lu I and Lr I with good agreement with NIST and previous theory.

- $7s^2 8s \rightarrow 7s^2 7p = 20736 \pm 560 \text{cm}^{-1}$
- $7s^27d \rightarrow 7s^27p = 28607 \pm 672 \text{cm}^{-1}$.

• Not properly including static correlation leads to a contracting effect of the separations

Lr I Outlook

- Further calculations could variationally incorporate static and dynamic correlation.
- To do this, new technologies would be needed such as non-orthogonal orbital sets or machine learning
- Hyperfine splittings of Lr I

Ab-initio multiconfigurational calculations of experimentally significant energy levels and transition rates in Lr I (Z=103)

J. S. Andrews, $^{1,\,2}$ J. Grumer, 3 S. Fritzsche, $^{1,\,2,\,4}$ A. Bondarev, $^{2,\,4}$ P. Jönsson, 5 and J. Bieroń 6

 ¹ Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität, 07743 Jena, Germany ² Helmholtz-Institut Jena, 07743 Jena, Germany ³ Theoretical Astrophysics, Uppsala University, Uppsala, Sweden
 ⁴ GSI Helmholtzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany ⁶ Malmö University, Malmö, Sweden

-

Thank you for listening!

