HÜBNER Photonics

UNIVERSITY OF GOTHENBURG

Laser development towards resonant laser ionization spectroscopy of actinides

LISA Conference, CERN 2.09.2024

Mitzi Urquiza

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

Motivation

GSİ

Laser Ionization and Spectroscopy of Actinides

Actinides are complicated to study.

- Provide atomic and nuclear structures
- For the heaviest elements, limited by [1]
 - Low production rates
 - Scarce information on atomic levels

LASER IONISATION AND SPECTROSCOPY OF ACTINIDES

2

[1] M. Block, et al., Progress in Particle and Nuclear Physics 116, 103,834 (2021).

Motivation

Laser Ionization and Spectroscopy of Actinides

Lasers need pulses with enough power density, stability, and narrowband operation.

Challenges:

- Produce *difficult* wavelengths
- Optical linewidth << GHz
- Frequency stability

LASER IONISATION AND SPECTROSCOPY OF ACTINIDES

Spectral coverage at RILIS [5]

HÜBNER Photonics

(E) UNIVERSITY OF GOTHENBURG

Laser linewidth at FWHM

OPO basics

PRINCIPLE

- Three-wave-mixing of pump, signal, and idler
- $\omega_p = \omega_s + \omega_i$
- $\mathbf{k}_{p} = \mathbf{k}_{s} + \mathbf{k}_{i} + \Delta \mathbf{k}$

REALIZATION

- Source of coherent pump light
- $\chi^{(2)}$ nonlinear medium
- Bow-tie optical resonator

Beam Path Step-by-Step

Wavelength Tuning Mechanisms

Coarse tuning

A few nm per centigrade,

Stepwise tuning

up to 100 GHz,

Continuous tuning

up to 20 GHz per scan.

First experiment

Benchmark evaluation of an OPO seeded system with silver @ 328 nm

CRIS setup at ISOLDE, CERN [5]

HUBNER

Laser systems to generate 328 nm pulses

HUBNER

Experimental setup

Benchmarking the OPO system for laser spectroscopy

- Compare 109-Ag with three systems
 - Optical and transition linewidth
 - Handling and maintenance

PRELIMINARY

Results

Transition linewidth, hf splitting, dipole moment, IS, and change in the mean-squared charge radii

Α	FWHM				
109	239(14)	1.959(21) ^a	Ref. b	0	0
111	221(5)	2.153(8)	-0.144(2) ^c	-436(5)	0.181(27)
111m	188(10)	38.684(8)	4.52(5)	-357(4)	0.162(26)
117	232(17)	2.615(17)	-0.174(3)	-1198(10) d	0.578(94) ^e
117m	173(9)	37.960(2)	4.43(5)	-1113(2)	0.558(91)

Literature values

- a 1976.932075(17) MHz [6]
- ^b -0.1306906(2) μ_N [7]
- c -0.146(2) μ_N [8]
- d -1181(6) MHz [9]
- e 0.568 (73) fm² [9]

[6] Dahmen et al., Z. Physik 200, 456–466 (1967)
[7] Sahm and Schwenk, Z. Naturforsch. A 29,1763(1974)
[8] Woodgate and Hellwarth, Proc. Phys. Soc. A 69, 581 (1956)
[9] Reponen et al., Nat Commun 12, 4596 (2021)

Second experiment

High-resolution spectroscopy of Fm-255

(Attempted) evaluation an OPO injection-locked Ti:sa system with fermium @ 355 nm

Production of fermium-255

High Flux Isotope Reactor (HFIR) at ORNL

IGIU

GSI

See: - Jessica Warbinek Tomorrow 10:15

High Flux Reactor at ILL

The isotopes used in this research were supplied by the U.S. Department of Energy, Office of Science, by the Isotope Program in the Office of Nuclear Physics. The ^{253,254,255}Es and ^{255,257}Fm were provided to Florida State University and the University of Mainz via the Isotope Development and Production for Research and Applications Program through the Radiochemical Engineering and Development Center at Oak Ridge National Laboratory.

RISIKO mass separator

PI-LIST Perpendicularly Illuminated - Laser Ion Source and Trap [10]

Laser systems at Mainz

Ionization schemes [11]

No.	WN (cm-1)	FWHM (cm-1)	WN fund. (cm-1)	WL fund. (nm)	WN to IP (cm-1)	WN to IP fund. (cm-1)	WL to IP fund. (nm)
R1	25,099 80 pm 0 2		12,549.90	796-8	27,300.2	13650-1	732.6
R2	25,111.80 pm 0.2	-	12,555.90	796.4	27,288.2	13644.1	732.9
R3	27,389 pm 1.5	0.85 pm 0.16	13,694.5	730.2	25,011	12505.5	799.6
R4	27,466 pm 1.5	1.34 pm 0.09	13,733	728.2	24,934	12467	802.1
R5	28,185 pm 1.5	1.08 pm 0.05	14,092.5	709.6	24,215	12107.5	825.9
R6	28,377 pm 1.5	0.75 pm 0.05	14,188.5	704.8	24,023	12011 5	832.5
R7	28,391 pm 1.5	0.61 pm 0.03	14,195.5	704.4	24,009	12004.5	833.0

PRELIMINARY

PI-LIST measurements

GSİ

IGIU

	J	E (cm ⁻¹) [12]	A (MHz)	B (MHz)
Ground state	6	0	-149 (5)	-10454 (100)
Excited state R1	6	25100	-309 (5)	-12821 (100)
Excited state R2	5	25112	-9 (5)	-13529 (100)

[12] H. Backe, et al., Hyperfine interactions 162(1-4), 3–14 (2005

_ISA

Conclusions

- OPO injection-seeded PDA is suitable for high resolution spectroscopy
 - FWHM ≤173 MHz
 - Known values are in good agreement with literature
 - New measurements for some silver isotopes
- First attempt OPO injection-locked Ti:Sa limited by pump availability
 - Good data from other two excitation schemes

Current work

- OPO/OPA system, all solid state
 - Uses same crystal as the OPO
 - 780 nm pulsed pump (Ti:Sa)
 - No cavity needed
 - Amplified pulses in the OPO fundamental (1000nm 1500nm)
- Further frequency doubled or tripled stages needed

Experimental setup

Current setbacks

- 140mW pump light at 1kHz:
- Unseeded
- No optimization
 - 12% conversion rate

Acknowledgements silver experiment

M. Urquiza-González^{1*}, M. Au^{2,3}, C. Bernerd⁴, M. Bissell⁵, B. van den Borne⁴, K. Chrysalidis², T. E. Cocolios⁴, V. N. Fedosseev², K. T. Flanagan⁵, R. G. Garcia Ruiz⁶, S. Geldhof⁷, R. P. de Groote^{4,8}, Á. Koszorús⁴, D. Hanstorp⁹, M. Heines⁴, R. Heinke², K. Hens¹, O. S. Khwairakpam^{10,11}, S. Kujanpää⁸, L. Lalanne⁴, B. A. Marsh², G. Neyens⁴, M. Nichols⁹, H. Perrett⁵, D. Pitman-Weymouth⁵, J. Reilly⁵, V. Sonnenschein¹, K. Wendt³, J. Wessolek^{2,5}, S. G. Wilkins⁶, and X. F. Yang¹³

26

¹Division HÜBNER Photonics, HÜBNER GmbH & Co. KG, Kassel, Germany ²CERN, Geneva, Switzerland ³Johannes Gutenberg Universität, Mainz, Germany ⁴KU Leuven, Leuven, Belgium ⁵The University of Manchester, Manchester, UK ⁶Massachusetts Institute of Technology, Massachusetts, USA ⁷Grand Accélérateur National d'Ions Lourds, Caen, France ⁸University of Jyväskylä, Jyväskylä, Finland ⁹Göteborgs Universitet, Gothenburg, Sweden]G|U ¹⁰Università di Siena, Siena, Italy ¹¹Istituto Nazionale di Fisica Nucleare - LNL, Legnaro, Italy ¹²School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China MANCHESTER UNIVERSITÀ DI SIENA UNIVERSITY OF TYVÄSKYLÄ.

HÜBNER Photonics

KU LEUVEN

The fermium collaboration

Universität Mainz

Julian Auler Sebastian Berndt Holger Dorrer Christoph E. Düllmann Vadim Gadelshin **Raphael Hasse** Magdalena A. Kaja Nina Kneip Mustapha Laatiaoui Andrea T. Loria Basto Christoph Mokry Thorben Niemeyer **Dennis Renisch** Jörg Runke Matou Stemmler Petra Thörle Norbert Trautmann Felix Weber Klaus Wendt

GSI Darmstadt

Michael Block Manuel Gutiérrez-Torres Sebastian Raeder Kenneth van Beek Jessica Warbinek

ILL Grenoble Ulli Köster

FSU Tallahassee Thomas Albrecht-Schönzart Alyssa Gaiser Joseph Sperling

HÜBNER Photonics Korbinian Hens Volker Sonnenschein Mitzi Urguiza-González

HIM Mainz

Premaditya Chhetri Tom Kieck Jeremy Lantis Danny Münzberg Steven Nothhelfer Elisabeth Rickert Dominik Studer

GANIL Alexandre Brizard Nathalie Lecesne

University of Gothenburg Dag Hanstorp

JOHANNES GUTENB UNIVERSITÄT MAINZ

CERN

Acknowledgments

Universität Mainz

Mechanical workshop at TRIGA Mainz R. Jera, Glassblower at JGU Chemistry Radiation protection staff at TRIGA S. Karpuk

GSI

ILL Grenoble

ILL reactor team and health physics

Oak Ridge National Laboratory

Nate Sims, Radioisotope Laboratory Technician Nonreactor Nuclear Facilities Division Hot Cell Staff This Marie Sklodowska-Curie Action (MSCA) Innovative Training Network (ITN) receives funding from the European Union H2020 Framework Program under grant agreement no. 861198. LISA will run from November 2019 to October 2023.

FR

This research is supported by the U.S. DOE, Office of Science, BES Heavy Element Chemistry program. The isotopes used in this research were supplied by the U.S. DOE Isotope Program, managed by the Office of Science for Nuclear Physics.

Oak Ridge National

Laboratory

Ashley Harvey

Kristian Mhyre

Samantha Schrell

Shelley Van Cleve

TU Darmstadt

Thomas Walther

Hideki Tomita

Reinhard Heinke

Nagoya University

Julie Ezold

Thanks for your attention!

This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

Back-up slides

PPLN crystal

HFS 111m, 117mAg

4A

HUBMER

RISIKO mass separator

HORNER

Medium resolution scans

- R1, R2, R5
- Seeded laser insource
- Influence of AI studied
- New AIS for R1, R2

