

IAEA safeguards

Elisa Rapisarda IAEA Department of Safeguards LISA Conference, CERN, 1–4 September 2024

Overview

U and Pu fissile isotopes History of safeguards Key legal elements of IAEA safeguards How the IAEA implements safeguards Examples of non-destructive measurements **U** enrichment Pu assay

Actinides Pu and U

				Cm 233 1.0 m	Cm 234 51 s	Cm 235 5.0 m	Cm 236 ^{10 m}	Cm 237 ^{20 m}	Cm 238 2.4 h	Cm 239 2.9 h	Cm 240 27 d	Cm 241 32.8 d	Cm 242 162.93 d	Cm 243 ^{30 y}	Cm 244 34 ms 18.0 y	Cm 245 8.5E3 y	Cm 246 4.73E3 y	Cm 247 1.60E7 y
			Am 231 30 s	Am 232 1.31 m	Am 233 3.2 m	Am 234 2.32 m	Am 235 9.9 m	Am 236 30 m	Am 237 1.217 h	Am 238 1.63 h	Am 239 11.9 h	Am 240 2.117 d	Am 241 432.8 y	Am 242	Am 243 7.36E3 y	Am 244 25 m 10.1 h	Am 245 2.05 h	Am 246 ,25.0 m 39 m
	Pu 228 10 ms	Pu 229 2.0 m	Pu 230 1.70 m	Pu 231 8.6 m	Pu 232 ^{33.7 m}	Pu 233 20.9 m	Pu 234 8.8 h	Pu 235 25.3 m	Pu 236 2.858 y	Pu 237 180 ms 45.3 d	Pu 238 87.7 y	Pu 239 2.4114E4 y	Pu 240 6.563E3 y	Pu 244 14.33	Pu 242 3.735E5 y	Pu 243 4.956 h	Pu 244 8.00E7 y	Pu 245 10.5 h
Np 226 35 ms	Np 227 510 ms	Np 228 1.02 m	Np 229 4.0 m	Np 230 4.6 m	Np 231 48.8 m	Np 232 ^{14.7 m}	Np 233 36.2 m	Np 234 4.4 d	Np 235 1.084 y	Np 236 22.5 h / 1.52E5 y	Np 237 2.14E6 y	N <u>p 239</u> 2.117 d	Np 239 2.355 d	Np 240 7.4 m 1.08 h	Np 241	Np 242 5.5 m 2.2 m	Np 243 1.85 m	Np 244 2.29 m
U 225 61 ms	U 226 350 ms	U 227 1.1 m	U 228 9.1 m	U 229 58 m	U 230 20.8 d	U 231 4.2 d	U 232 ^{69.8} y	U 233 1.593E5 y	U 234 0.0054 2457E5 y	U 235 0.7204 26 m 7.038E8 y	U 236 2.37E7 y	U 237 6.75 d	U 238 99.2742 4.468E9 y	U 239 23.47 m	U 240 14.1 h	U 241 5.0 m	U 242 16.8 m	
Pa 224 844 ms	Pa 225 1.7 s	Pa 226 1.8 m	Pa 227 38.3 m	Pa 228 22 h	Pa 229 1.50 d	Pa 230 17.4 d	Pa 231 3.276E4 y	Pa 232	Pa 233 27.0 d	Pa 234 1.17 m 6.78 h	Pa 235 ^{24.2 m}	Pa 236 9.1 m	Pa 237 8.7 m	Pa 238 2.27 m	Pa 239 1.8 h	Pa 240 2.0 m		,
Th 223 600 ms	Th 224 1.05 s	Th 225 8.72 m	Th 226 30.57 m	Th 227 18.718 d	Th 228 1.9127 y	Th 229 2.9 d 7.34E3 y	Th 230 7.54E4 y	Th 231 1.0633 d	Th 232 100 1.405E10 y	Th 233 22.3 m	Th 234 24.09 d	Th 235 6.9 m	Th 236 37.5 m	Th 237 4.8 m	Th 238 _{9.4 m}			
Ac 222 1.05 m 5.0 s	Ac 223 2.10 m	Ac 224 2.78 h	Ac 225 10.0 d	Ac 226 1.224 d	Ac 227 21.773 γ	Ac 228 6.15 h	Ac 229 1.045 h	Ac 230 2.03 m	Ac 231 7.5 m	Ac 232 198 m	Ac 233 2.42 m	Ac 234 44 s	Ac 235 40 s	Ac 236 2.0 m				+

- Fissile isotopes ²³³U, ²³⁵U, ²³⁹Pu and ²⁴¹Pu can sustain a nuclear chain reaction \rightarrow applications in <u>nuclear weapons</u> and <u>nuclear reactors</u>
- Uranium is naturally occurring: ²³⁴U (0.0055 %), ²³⁵U (0.72 %), ²³⁸U (99.275 %)
- Plutonium is synthetically produced by uranium neutron capture.

Chain reaction

Chain reaction

- Neutrons \rightarrow induce next generation fissions
- Multiplication factor k-infinity = $v \Sigma_f / \Sigma_a$ v = number of neutrons per fission $\Sigma_f =$ Fission cross-section $\Sigma_a =$ Total absorption cross-section (including fission)
- <u>Chain reaction: k-infinity > 1.0</u>

History

Chicago Pile (USA)

- 1942
- First controlled chain reaction
- No comprehensive nuclear data
- Poor calculational capability
- Graphite and uranium impurities
- Absorption in air
- >30 piles before success

Pu production

- In nuclear reactors from uranium via neutron capture.
- Several isotopes are bred.
- Extracted via chemical separation from fission products.

Pu 230	Pu 231 8.6 m	Pu 232 33.7 m	Pu 233 20.9 m	Pu 234 8.8 h	Pu 235 25.3 m	Pu 236 2.858 y	Pu 237 180 ms 45.3 d	Pu 238 87.7 y	Pu 239 2.4114E4 y	Pu 240 6.563E3 y	Pu 241 14.33 γ	Pu 242 3.735E5 y	Pu 243 4.956 h	Pu 244 8.00E7 y	Pu 245 10.5 h
Np 229 ^{4.0 m}	Np 230 4.6 m	Np 231 48.8 m	Np 232 14.7 m	Np 233 ^{36.2 m}	Np 234 4.4 d	Np 235 1.084 y	Np 236 22.5 h 1.52E5 y	Np 237 2.14E6 y	Np 238 2.117 d	Np 239 2.355 d	Np 240 7.4 m 1.08 h	Np 241 13.9 m	Np 242 5.5 m 2.2 m	Np 243 1.85 m	Np 244 2.29 m
U 228 9.1 m	U 229 58 m	U 230 20.8 d	U 231 4.2 d	U 232 ^{69.8} y	U 233 1.593E5 y	U 234 0.0054 2.457E5 y	U 235 0.7204 26 m 7.038E8 y	U 236 2.37E7 y	U 237 6.75 d	U 238 99.2742 4.468E9 y	U 239 23.47 m	U 240 14.1 h	U 241 5.0 m	U 242 16.8 m	
											→				
Pa 227	Pa 228	Pa 229	Pa 230 🧹	Pa 231	Pa 232	Pa 233	Pa 234	Pa 235	Pa 236	Pa 237	Pa 238	Pa 239	Pa 240		

First reactors for Pu production

- Hanford reactor (USA)
 - Learnt from Chicago piles
 - Water-cooled, ~ 250 MW(th)
 - Xe-135 absorption first seen after increasing power
 - Required additional fuelling
- Mayak reactor (USSR)
 - Produced components for the RSD-1 nuclear device, exploded in August 1949
 - Part of a complex that included: five Pu and five ³H production reactors, several reprocessing plants, Pu metallurgy plant, radiochemical plant to separate weapons-grade plutonium

First reactors for Pu production

- Windscale piles (UK)
 - -Fuelled with natural uranium metal
 - -Graphite moderator
 - -Air-cooled, ~180 MW(th)
 - -Cooling air discharged through stack via filters
 - –Uranium fire, extinguished by flooding core

History of safeguards

History of safeguards

History of safeguards

Treaty on the Non-Proliferation of Nuclear Weapons (NPT) enters into force (1970)

Comprehensive Safeguards Agreements (1972)

Key legal elements of IAEA safeguards

Three types of safeguards agreements

+ADDITIONAL PROTOCOL: improve the Agency's capability to detect undeclared nuclear material and activities

Nuclear fuel cycle

How the IAEA implements safeguards

Safeguards technical objectives

-Correctness of state-declared material and activities

-Completeness of state-declared material and activities

-Assurances as to the absence of undeclared nuclear material and activities in a State.

Collecting and evaluating information Safeguards

Verification measures

- Nuclear material accountancy
 - Counting
 - Weighing
 - Volume determination
- Containment and surveillance
 - Tamper-proof seals
 - Cameras installed in facilities
- Material flow monitoring/verification
- Destructive assay
- non-destructive assay
 - Gross defect: all or most of the nuclear material is missing
 - Partial defect: a fraction of the nuclear material is still present
 - Small bias defect: a small fraction of the declared amount is missing

Fresh fuel verification

- Enrichment and active length verification:
 - Portable spectrometer HM-5
- Comparison of verified vs. declared fuel IDs
- Core/containment sealing

Fresh fuel verification

- Spontaneous fission yield of U isotopes is quite low→ passive measurements are impractical
- Induced-fission neutrons from ²³⁵U using active interrogation
 - AmLi source
 - Neutron below ²³⁸U fission threshold
- Neutron detection system heavily impacted by the presence of unverifiable burnable poison in fresh fuel
- Organic liquid scintillators for fast neutron detection
- Pulse shape discrimination of neutron/gamma
- Determination of ²³⁵U linear mass

Probability of detection of diversion

- PWR 17x17, ca. 3% init. enrich., ca. 55-60 GWd/tU of BU,
 ca. 4 kg of U-235
 ca. 2 kg of Du 220
 - ca. 3 kg of Pu-239
- 1 SQ of U-235 == 25 kg \rightarrow 12-13 assemblies (large scale diversion, 50%) \rightarrow ca. 60 assemblies (small scale diversion, 10%)
- 1 SQ of Pu-239 == 8 kg \rightarrow ca. 5 assemblies (large scale diversion, 50%) \rightarrow 30 assemblies (small scale diversion, 10%)

Non-destructive assay verification

Safeguards

Example of non-destructive assay verification: U enrichment

Uranium enrichment

- Most nuclear reactors use uranium fuel with an increased concentration of the U-235 isotope.
- The proportion of the U-235 isotope has been raised from the natural level of 0.711% to around 3.5–5%.
- The gas centrifuge is the most common enrichment technology. It uses UF₆ as the process material because of its unique properties.
- The same process can be used to produce higher enrichment (≥20% U-235).

UF₆ centrifuges

Gaseous UF₆ enrichment monitor

• To address the potential "misuse" of an enrichment facility

 $Enrichment = \frac{Density \ of \ U - 235}{Density \ of \ U}$

- Measurement of:
 - U-235 Gamma spectrum
 - Temperature
 - Pressure
- Unattended mode of operation
 - permanently operating systems
 - No inspector presence

Gaseous UF₆ enrichment monitor

• The density of U-235 is calculated from the U-235 gamma spectrum:

$$\rho_{U-235} = const * {}^{235}U_{gas}count rate$$

• Uranium density is calculated from the ideal gas law:

$$\rho_{U\,gas} \propto \frac{P}{T}$$

Online enrichment monitor

Example of non-destructive assay verification: Pu quantification

- Items can be bulky, e.g., cans of several kg of PuO₂
- For the human body it is chemically toxic as some other heavy metals like lead and mercury
- Old separated Pu contains Am-241

Plutonium non-destructive assay

- Non destructive assay of Pu is only possible on reprocessed material (not irradiated)
 - Metal Pu
 - Oxide
 - Mixed oxide
- Gamma spectrometry of ²³⁹Pu (²³⁹Pu \rightarrow ²³⁵U^{*} + α) is very challenging:
 - Major γ emission at 129.3 keV and 413.7 keV
 - Complex decay scheme
 - $-\gamma$ self absorption by Pu

Spontaneous fission neutrons

- Pu isotopes: Characterized by large SF branching ratio \rightarrow strong neutron emission \rightarrow correlated
- Neutrons: penetrating radiation compared to gamma
 - Can probe the entire volume of the item
 - Not easily shielded
- Neutron production rates around 10⁵ n/s per kg of Pu (spontaneous fission)
 - Pu-239 neutron emission is very small compared to other even-even isotopes.

Other sources of neutrons: (α,n)

- Pu isotopes: Characterized by large $\alpha\text{-decay}$ ratio
- α particles can produce neutrons through (α ,n) reactions:

 $\alpha + {}^{18}O \rightarrow {}^{21}Ne + n$

$$\alpha + {}^{19}F \rightarrow {}^{22}Na + n$$

- Uncorrelated neutrons
- Makes quantification of Pu mass via total neutron counting quite complex

Neutron coincidence measurements

- Coincidence measurements are cleaner compared to total neutron counting
- Unaffected by the chemical composition of the material that yields to single neutrons from (α ,n) reactions
- Sensitive only to ²³⁸Pu, ²⁴⁰Pu and ²⁴²Pu

Pu mass determination

$${}^{240}Pu_{eff} = 2.52^{238}Pu + {}^{240}Pu + 1.68^{242}Pu$$

• Using isotopic composition, the total quantity of fissile ²³⁹Pu can be determined

Other sources of neutrons: multiplication

- Neutron production rates can be enhanced due to induced fission rates.
- Multiplication of a sample depends on its:
 - Chemical form
 - Mass
 - Shape
- 10 g of Pu metal shows 5% enhancement of double coincidences.
- Corrections to the coincidence rate need to be applied

Pu mass determination

- If single, double and triples rate are measured, the three sources of neutrons can be precisely accounted for.
- Otherwise modeling of the source term is required for multiplication correction

• 30 He-3 tubes 24 outer ring – 6 inner ring • 3 HPGe detectors MOX powder cans Positioned in front of Ge detectors each can of MOX • 1 digital camera He-3 tubes

- To provide canister IDs
- 1 load cell

Plutonium powder assay

Passive neutron coincidence counter

- Detection in He-3 gas-filled proportional counters
- Thermalize neutrons in polyethylene
- Coincidence time on the order of 50–60 μs: delayed neutron coincidences
- Maximize detection efficiency to increase triple coincidence count rate (40–60%)

Safeguards

Summary

- Safeguards ensures that nuclear material and activities are conducted for peaceful purpose only
- IAEA has the right and obligation to perform safeguards
- In order to apply safeguards measures, inspectors need to be able to verify the operator's declaration for correctness and completeness.
- A number of non-destructive-assay techniques may be used to verify operator declarations and confirm the absence of undeclared activities.
- The anticipated rapid growth of nuclear activities in the years to come will require new methods of maintaining optimum cost/ effectiveness in safeguards work.

Thank you!

Burnup →Pu isotopes

- High burnup:
 - 53% Pu-239
 - 25% Pu-240
 - 15% Pu-241
 - 5% Pu-242
 - 2% of Pu-238
- Low burnup:
 - 89.7% Pu-239
 - 9.6% Pu-240
 - 0.6% Pu-241
 - 0.1% Pu-242
 - 0.02% Pu-238

Build-up of Pu Isotopes with Burnup (PWR)

- Weapons-grade Pu \rightarrow larger than 93% of Pu-239
- Reactor-grade Pu

Online enrichment monitor

• Low resolution spectroscopy (Nal)

Fission cross-sections

- Fission
 - High at thermal neutron energies
 - Low at high neutron energies
 - Favoured in the low-energy neutron energy spectrum
- % ²³⁵U and ²³⁹Pu
 - High % = super-critical assembly in a fast spectrum; basis of fission weapons and fast reactors
 - Lower % = with a moderator to slow down the neutrons; basis of thermal reactors

Spontaneous fission neutrons

Table 11-	1. Spontaneous	fission	neutron	yields

Isotope A	Number of Protons Z	Number of Neutrons N	Total Half-Life ^a	Spontaneous Fission Half-Life ^b (yr)	Spontaneous Fission Yield ^b (n/s-g)	Spontaneous Fission Multiplicity ^{b,c} v	Induced Thermal Fission Multiplicity ^c V
232Th	90	142	$1.41 \times 10^{10} \mathrm{yr}$	$>1 \times 10^{21}$	$>6 \times 10^{-8}$	2.14	1.9
232U	92	140	71.7 yr	8×10^{13}	1.3	1.71	3.13
233U	92	141	$1.59 \times 10^5 \mathrm{yr}$	1.2×10^{17}	8.6×10^{-4}	1.76	2.4
234U	92	142	$2.45 \times 10^5 \mathrm{yr}$	2.1×10^{16}	5.02×10^{-3}	1.81	2.4
235U	92	143	$7.04 \times 10^8 \mathrm{yr}$	3.5×10^{17}	2.99×10^{-4}	1.86	2.41
236U	92	144	$2.34 \times 10^7 \mathrm{yr}$	1.95×10^{16}	5.49×10^{-3}	1.91	2.2
238U	92	146	$4.47 \times 10^{9} \mathrm{yr}$	8.20×10^{15}	1.36×10^{-2}	2.01	2.3
237Np	93	144	$2.14 \times 10^6 \mathrm{yr}$	1.0×10^{18}	1.14×10^{-4}	2.05	2.70
238Pu	94	144	87.74 yr	4.77×10^{10}	2.59×10^{3}	2.21	2.9
239Pu	94	145	$2.41 \times 10^4 \mathrm{yr}$	5.48×10^{15}	2.18×10^{-2}	2.16	2.88
²⁴⁰ Pu	94	146	$6.56 \times 10^{3} \mathrm{yr}$	1.16×10^{11}	1.02×10^{3}	2.16	2.8
²⁴¹ Pu	94	147	14.35 yr	(2.5×10^{15})	(5×10^{-2})	2.25	2.8
²⁴² Pu	94	148	$3.76 \times 10^{5} \mathrm{yr}$	6.84×10^{10}	1.72×10^{3}	2.15	2.81
²⁴¹ Am	95	146	433.6 yr	1.05×10^{14}	1.18	3.22	3.09
242Cm	96	146	163 days	6.56×10^{6}	2.10×10^{7}	2.54	3.44
244Cm	96	148	18.1 yr	1.35×10^{7}	1.08×10^{7}	2.72	3.46
²⁴⁹ Bk	97	152	320 days	1.90×10^{9}	1.0×10^{5}	3.40	3.7
252Cf	98	154	2.646 yr	85.5	2.34×10^{12}	3.757	4.06

Pu spectrometry

- Accurate measurement of Pu isotopic composition is required to interpret the results of the neutron coincidence measurements.
- Complex gamma ray spectrum requires high resolution gamma spectrometry with HPGe.

Pu spectrum with HPGe

