

High-resolution laser spectroscopy of light gold isotopes: investigation of **"island of deformation"** and **shape coexistence**

Osama Ahmad

Supervisor: Prof. dr. Gerda Neyens

Contents

- Research context (What?)
- CRIS (Technique and setup: How?)
- Physics case (Gold: Why?)
- Experimental Campaign
- Preliminary analysis
- What's new @ CRIS: Field Ionization Unit (FIU)
- Outlook

Research context

The *nuclear charge radius* and the *nuclear electromagnetic moments* are important observables to study the **nucleon-nucleon** interaction:

With laser spectroscopy, we can probe these observables in a nuclear model independent method.

Department of Physics and Astronomy (IKS)

P.O.O.F

IS737:High-resolution laser spectroscopy of light gold isotopes: investigation of **"island of deformation**" and **shape coexistence**

6

Spokesperson: Xiaofei Yang **Co-spokesperson**: Gerda Neyens, Shiwei Bai

Au

04/12 *1.H. De. Witte et al., Phys. Rev. Lett., 98,112502 (2007)* 2.A. Barzakh, et al. Phys. Rev. Lett. 127, 192501(2021)

The scenario is very different in Au (Z=79)

- Strong deformation is observed at N = 107 [3]
- Deformation remains constant until N = 101 "Island of deformation"
- At N=99 & N=108 (¹⁷⁸Au,¹⁸⁷Au), **shape coexistence**

Proposed measurements

Isotope	Half-life	Jπ	μ (μ _N)	Q _s (b)	
¹⁷⁷ Au ₉₈	1.53 (s)	1/2+	1.15 (5)		
^{177m} Au ₉₈	1 (s)	11/2 ⁻	6.348 (6)	-	
¹⁷⁸ Au ₉₉	3.4 (s)	(2,3)	?	-	^
^{178m} Au ₉₉	2.7 (s)	(7,8)	?	-	'Shape coexistence'
¹⁷⁹ Au ₁₀₀	7.1 (s)	1/2+	1.01 (5)		
¹⁸⁰ Au ₁₀₁	8.4 (s)	1+	-0.83 (9)	-	^
¹⁸¹ Au ₁₀₂	13.7 (s)	3/2 ⁻	?	-	
¹⁸² Au ₁₀₃	15.5 (s)	2+	1.66 (9)	-	
¹⁸³ Au ₁₀₄	42.8 (s)	5/2 ⁻	1.972 (23)	-	
¹⁸⁴ Au ₁₀₅	20.6 (s)	5+	2.07 (2)	4.65 (26)	'Island of deformation'
^{184m} Au ₁₀₅	47.6 (s)	2+	1.44 (2)	1.90 (16)	
¹⁸⁵ Au ₁₀₆	4.25 (m)	5/2 ⁻	2.193 (61)	-1.10 (10)	
¹⁸⁶ Au ₁₀₇	10.7 (m)	3-	-1.202 (60)	3.10 (6)	V
¹⁸⁷ Au ₁₀₈	8.2 (m)	1/2+	0.557 (41)		(Shano coovistonco)
^{187m} Au ₁₀₈	2.3 (s)	9/2 ⁻	3.529 (53)	-	
¹⁸⁸ Au ₁₀₉	8.84 (m)	1-	-0.07 (3)	-	

Q_s :mostly unknown around the beginning of 'island of deformation'

¹⁷⁷⁻¹⁸³Au: Spin assignment is tentative

I,Q +*known* μ

- Probing the configuration of the nuclear states

 $Q_s^{177-188}Au + known < r^2 >$

- Information on the nature of the deformation and the degree to which these nuclei are statically deformed.

$$Q_{\text{intr.}} = \frac{3}{\sqrt{5\pi}} Z R_0^2 \beta_2 (1 + 0.36\beta_2).$$

$$Q_{\rm s} = \frac{3K^2 - I(I+1)}{(2I+3)(I+1)} Q_{\rm intr.}$$

Newly measured I,Q

Benchmark theoretical models:
Monte Carlo Shell Model, HFB &
DFT

Experimental campaign

07/12

KU LEUVEN

Preliminary analysis

Beamtime summary

- 100 hours of scanning time (~ 4 days).
- 126 scans in total (14 isotopes and 2 isomers)
- Voltage scanning was mostly used throughout the beamtime. Therefore, due to the large splitting(~ 3 GHz) in the hyperfine structure of gold, the scans of each hyperfine structure was recorded in two parts as left and right (branches).
- Issues encountered with production of gold isotopes.
- Most of the shifts available to (re)visit ¹⁷⁸Au and ^{178,m}Au

No.	lsotope	Scans	LHS	RHS
1	180	7	4	3
2	181	9	5	4
3	182	8	5	3
4	183	7	5	2
5	185	5	2	3
6	187	10	5	5
7	187m	9	6	3

"Island of deformation" & shape coexistence

No.	lsotope	Scans	LHS	RHS
8	188	5 + 1(both)	3	3
9	189	7	5	2
10	189m	7	5	2
11	190	6	4	2
12	191	5	3	2
13	192	2	2	
14	193	2	1	1
15	195	5	3	2
16	197 (ref)	31	29	2

Benchmarking and quadrupole moments

Hey CRIS!! What's new??

FIU (Field Ionization Unit)

10/12

F₁ F₂ F₃

- Electric field ionization of Rydberg states in a collinear geometry.
- Increased sensitivity for isotope separation and measurement of atomic parameters over previous non-resonant laser ionization methods
- Reduction of Ionization volume.

Commissioning

- Commissioning was done in May, 2024.
- ³⁹K used to populate the Rydberg state 25d
- Electric field gradient required to ionize a Rydberg state is calculated using saddle point model:

$$E_{ionisation} = E_{IP} - 2\sqrt{\frac{Z_{eff}e^3}{4\pi\varepsilon_0}}\sqrt{E}$$

• ~ 450 V/0.5 cm gradient required to ionize the e⁻ in 25d Rydberg state

Pictures: Vernon, A.R. et al. Laser spectroscopy of indium Rydberg atom bunches by electric field ionization. Sci Rep 10, 12306 (2020).

KU LEUVEN

Summary

- Multiple ToF peaks in the MagneToF
- Rydbergs being ionized by collisions at different sites in the beamline. (CEC, IR, FIU & bender).

CEC deflectors ON

- Field Ionization Unit successfully installed.
- More time needed to do a systematic study.
- Populating low lying Rydberg states (e.g. n = 10) to lower the collisionals.
- DAQ improved to record voltages as a function of counts on MagneToF.
- OPO laser to be used to easily tune to various Rydberg states.

Centroid drift of reference isotopes ¹⁹⁷Au

