Electroweak Physics and Higgs Searches at LHC

Closing in on the Search for the Higgs Boson at LHC

Marumi Kado Laboratoire de l'Accélérateur Linéaire (LAL) IN2P3, CNRS

On behalf of the ATLAS and CMS Collaborations

Colloquia on the Latest LHC Results Presented at the International Conference on High energy Physics

Review of LHC Results, Summer Student Program 02/08/2011

Two Years of Remarkable LHC operations

Congratulations and thank you!

2010

2011

Two Years of Remarkable LHC operations

Congratulations and thank you!

2010

O(2) Pile-up events (per bunch crossing) 150 ns inter-bunch spacing

2011

O(8) Pile-up events (per bunch crossing) 50 ns inter-bunch spacing

Illustration of events taken at random (filled) bunch crossings

Two Years of Remarkable LHC operations

Congratulations and thank you!

2010

O(2) Pile-up events (per bunch crossing) 150 ns inter-bunch spacing Very small effect of Out-of-Time PU

Very nice description from MC (ATLAS and CMS)

2011

O(8) Pile-up events (per bunch crossing) 50 ns inter-bunch spacing Important Out-of-Time PU

position in the train...

The ATLAS and CMS Detectors In a Nutshell

Sub System	ATLAS	CMS		
Design	e de m	the second secon		
Magnet(s)	Solenoid (within EM Calo) 2T 3 Air-core Toroids	Solenoid 3.8T Calorimeters Inside		
Inner Tracking	Pixels, Si-strips, TRT PID w/ TRT and dE/dx $\sigma_{p_T}/p_T\sim 5 imes 10^{-4}p_T\oplus 0.01$	Pixels and Si-strips PID w/ dE/dx $\sigma_{p_T}/p_T \sim 1.5 imes 10^{-4} p_T \oplus 0.005$		
EM Calorimeter	Lead-Larg Sampling w/ longitudinal segmentation $\sigma_E/E\sim 10\%/\sqrt{E}\oplus 0.007$	Lead-Tungstate Crys. Homogeneous w/o longitudinal segmentation $\sigma_E/E\sim 3\%/\sqrt{E}\oplus 0.5\%$		
Hadronic Calorimeter	Fe-Scint. & Cu-Larg (fwd) $\gtrsim 11\lambda_0$ $\sigma_E/E\sim 50\%/\sqrt{E}\oplus 0.03$	Brass-scint. $\gtrsim 7\lambda_0$ Tail Catcher $\sigma_E/E \sim 100\%/\sqrt{E} \oplus 0.05$		
Muon Spectrometer System Acc. ATLAS 2.7 & CMS 2.4Instrumented Air Core (std. alone) $\sigma_{p_T}/p_T \sim 4\% (at 50 {\rm GeV})$ $\sim 11\% (at 1 {\rm TeV})$		Instrumented Iron return yoke $\sigma_{p_T}/p_T \sim 1\%~({ m at}~50{ m GeV}) \ \sim 10\%~({ m at}~1{ m TeV})$		

Preamble : Theoretical Breakthroughs

Several breakthroughs in the past decade have drastically changed the theory prospective to the hadron collider processes.

- The "Next-to..." revolution :
 - Breakthrough ideas in computation of loops (sewing together tree level amplitudes).
 - NLO generators, blackhat, NLOjet++, Phox, MCFM, etc...
 - NLO generators w/ PS, MC@NLO and POWHEG.
 - NLO+NLL or NNLL, CAESAR, ResBos, HqT
 - NNLO, FEHIP, FEWZ, HNNLO, DYNNLO
 - ...
- NNLO PDFs sets
- Parton Shower (and Matrix Element matching) improvements :

Pythia (8.1), Herwig++, Sherpa and CKKW (1.3) and MadGraph (5.0) performing very well (Including description of the Pile Up and the underlying event).

- The Jet revolution (Fast Jet) : Allowing to compute in reasonable time infra-red safe k_{τ} jets.

W and Z production Properties

Mostly with 2010 data (sufficient)

7

Properties of the W and Z Production

- Used to understand and calibrate our detector response (trigger, identification, resolution, efficiencies)

- Dominant signal and/or background in many other analyses and searches for new physics (top, Higgs, SUSY, ...)

Simple and Clean Event Selection

9

- W selection:

- p_{T} lepton (pT>20-25 GeV)
- Loose cut on met

(or not cut at all CMS)

ATLAS ~ 4MW (ee)

- Cross section measurements and W/Z Ratios

- Measurements in excellent agreement with the NNLO prediction (FEWZ)

W Charge Asymetry

- W charge asymmetry (x1.4 more +) :

$$A_{\ell} = \frac{\frac{\partial \sigma}{\partial \eta}(\ell^{+}) - \frac{\partial \sigma}{\partial \eta}(\ell^{-})}{\frac{\partial \sigma}{\partial \eta}(\ell^{+}) + \frac{\partial \sigma}{\partial \eta}(\ell^{-})}$$

- Constraining PDFs...

W Charge Asymetry

- W charge asymmetry (x1.4 more +) :

$$A_{\ell} = \frac{\frac{\partial \sigma}{\partial \eta}(\ell^{+}) - \frac{\partial \sigma}{\partial \eta}(\ell^{-})}{\frac{\partial \sigma}{\partial \eta}(\ell^{+}) + \frac{\partial \sigma}{\partial \eta}(\ell^{-})}$$

- Constraining PDFs... Already constraining u, d, qbar by almost 40%

Differential Cross Sections

-Differential cross sections for both the W and Z production measured.

Rather well described by predictions of NNLO
 PDF sets considered

- Measurements can impact on PDF central values and uncertainties

-W p_T measurements probe the ME-PS matching, the NLO calculations and the rsummation :

Pythia seems to be in better agreement than ResBos in the W $\ensuremath{p_{\text{T}}}$

- W and Z+jets in remarkable agreement with ME-PS

Very impressive results in such a small amount of time

W and Heavy Flavors

- W+Heavy flavor is dominated by Charm
- Makes it a probe of strange content!
- Need vertex mass to disentangle the W+b

These are very important control samples for the W,Z H to bb analyses!

Diboson Studies

The ATLAS Summary

Measurement of DiBoson Production

-Challenging analyses, extremely important in understanding the backgrounds to the search for the Higgsin diboson channels.

- Starting to gather a conspicuous mount of diboson events...

-Important to study anomalous Triple Gauge boson Couplings (TGCs)

- WZ (3Iv) Channels :

Cut	ATLAS	CMS
Lead. I p _T (GeV)	15	20
Trail. l p _T (GeV)	20	10
MET	25	30
Second Z Veto		1
W - M _T	1	

- Good compromise statistics and purity :

Typically~80 eventsPurity~90%

- ZZ(4I) Channels :
 - Essentialy background free channel (allows for lower $p_{\rm T}$ cut on leptons)

Cut	ATLAS	CMS	
Lead. I p _T (GeV)	15 (µ) - 25 (e)	20	
Trail. l p _T (GeV)	15 (µ) - 20 (e)	5 (µ) - 7 (e)	
Z Window (GeV)	25	30	

- In this case both Z are on-mass shell

Results :

Cross Section (pb)	WW		WZ		ZZ	
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS
Exp. Total	46	43	17.2	20	6.5	6.4
Measured	48.2	55.3	21.1	17.0	8.4	3.8
Stat. Uncert.	±4	±3.3	±1.2	±2.4	±0.6	±1.5
Syst. Uncert.	±6.4	±6.9	±0.9	±1.0	±0.3	±0.2
Luminosity	±1.8	±3.3	±0.9	±1.0	±0.3	±0.2

- Good agreement between measurements and NLO prediction.
- Interpretation in terms of anomalous TGC's :
 - Already stringent limits on anomalous TGC
 - Many other diboson results not show here (in particular in final states with photons)

From Standard EW Process to the Higgs Production

The CMS Summary

The Main Production Modes

Data driven background estimates legitimate use of NNLO cross sections!

* TH uncertainty mostly from scale variation and PDFs, $\delta\sigma_{PDF-\alpha s}$ ~8-10% and $\delta\sigma_{Scale^{\sim}}$ 7-8%

Decay Modes

Pure Branching Fractions

- The dominant b-decay channel

Huge backgrounds, needs distinctive features at production level and beyond... Associate production W,Z H and Boost!

- The $\tau\tau$ channel

Also needs distinctive production features, typically VBF. Can also be done inclusively, especially since the NEW MASS RECOSTRUCTION techniques

Decay Modes

Exclusive Modes Cross Sections

- The dominant b-decay channel

Huge backgrounds, needs distinctive features at production level and beyond... Associate production W,Z H and Boost!

- The $\tau\tau$ channel

Also needs distinctive production features, typically VBF. Can also be done inclusively, especially since the NEW MASS RECOSTRUCTION techniques

- The $\gamma\gamma$ channel

Dominant Channel in the very low mass range. Small branching but sizable yield. Very distinctive signature on its own.

- The WW Channels

- Dilepton (InIn) channel is dominant in the low mass (very poor mass resolution, essentially counting experiment)
- Semi leptonic (Inqq) largest event yield effective at large mass where the background is smaller.

- The ZZ Channels

- 4-leptons : "Golden mode" smallest event yield but large s/b ratio
- semi-leptonic (Ilqq) larger event yield but also much larger background (make use of the large banching Z in bb)
- 2-leptons 2-neutrinos (IInn) : Best compromise yield/purity. Dominant channel at high mass

Analyses Preparation

Common LHC efforts to agree on non consensual issues :

- Common effort LHC-wide to compute cross sections and branching ratios and...
 - Use common standard model input parameters (NNLO signal cross section)
 - Common strategy on correlated systematic uncertainties (scale variation, PDFs, α_s , etc...)

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

- Common effort to define statistical methods to derive limits and quantify an excess Important to allow an efficient subsequent ATLAS-CMS combination

The Projections of the Higgs Searches as Guidelines for Chamonix Workshop

Channels nano Review

Chai	nnel	btag (veto)	Jets	MET (GeV)	Shape	Mass Range (GeV/c ²)	Main backgrounds
γ	γ				Μ _{γγ}	110-150	γγ (from sidebands)
τι	-* /	1	1		Μ _{ττ}	110-140	Z from data driven methods
W	Ή	1	2		M _{bb}	110-130	Top (3j - high M _{bb}) and W+jets (low M _{bb})
Z	Н	1	2		M _{bb}	110-130	Z+jets (low M _{bb})
0-je WW (lvlv) VBF	0-jet		0	>30		110-600	WW (control region M _{II})
	1-jet	veto	1	>30		110-600	Top (from reverse btag) and WW (M _{II} CR)
	VBF*	veto	2	>30		110-600	Top from CS
WW**	0-jet		0	>30	M _{ww}	200-600	W+jets (sidebands)
(lvqq)	1-jet	veto	1	>30	M _{ww}	200-600	W+jets (sidebands)
ZZ ([)	IP			M _{4I}	110-600	ZZ (from MC), Z+jets and top (CR)
ZZ (ΙΙνν)		1		>30	M _T	200-600	VV(from MC) and top (MC and checks)
ZZ (llqq)		1	2	<50	M _{IIqq}	200-600	Z+jets (from MC) and top (from MC)

* CMS only / ** ATLAS only

Take home message :

- Detectors are fully used in these analyses

- Backgrounds are derived from data (some inputs from MC)

Low Mass Channels

Review of LHC Results, Summer Student Program 02/08/2011

Low Mass Channels

A priori potentially large enhancement...

... Not so obviously enhanced (e.g. SM4)

Still e.g. NMMSSM (U. Ellwanger Phys.Lett. **B 698**, 293-296,2011) up to x6 at low masses, Fermiophobia...

- If observed implies that it does not originate from spin 1 : Landau-Yang theorem

L. Landau, Dokl. Akad. Nauk. , USSR 60, 207 (1948) and C. N. Yang, Phys. Rev. 77, 242 (1950).

-Key features :

-Invariant mass resolution

- Energy response carateristics of EM-Calorimeters
- Energy calibration

- Interaction vertex position (IP spread of 5.6 cm, assuming (0,0,0) adds ~1.4 GeV in mass resolution equiv. to the calo. M_{yy} resolution itself).

Transparence Calibration Crucial

Calibration for Material Upstream important

 $\sigma \sim 1.7 \text{ GeV}$

-Key features :

-Invariant mass resolution

- Energy response carateristics of EM-Calorimeters
- Energy calibration
- Interaction vertex position (IP spread of 5.6 cm, assuming (0,0,0) adds ~1.4 GeV in mass resolution equiv. to the calo. M_{gg} resolution itself).
- Background rejection γ/π^0 also critical

-Key features :

-Invariant mass resolution

- Energy response carateristics of EM-Calorimeters
- Energy calibration
- Interaction vertex position (IP spread of 5.6 cm, assuming (0,0,0) adds ~1.4 GeV in mass resolution equiv. to the calo. M_{gg} resolution itself).
- Background rejection γ/π^0 also critical

Higgs Boson Search in the VH, H→bb (ATLAS only)

- At the heart of a completely new analysis trend : Jet substructure (Not yet applied)

- Not as strong as the diphoton but important to gather information about the couplings.

- Backgrounds are estimated from control samples :

First Steps Towards Jet Substructure

- Use Higgs only at high p_T to improve acceptance and reduce bkg.
- The Higgs would be a single jet, then investigate the jet structure, RECIPE :

Higgs Boson Search in the VBF $H{\rightarrow}\tau\tau$

-W and Z Cross sections in taus measured in

CMS and ATLAS

- Search in the SM carried out in the VBF mode :

- Beautiful VBF μ - τ candidate in CMS!
- Dilepton and semi-leptonic topologies considered

Higgs Boson Search in the VBF $H \rightarrow \tau \tau$ (CMS only)

- Backgrounds are dominated by Z production estimated with data-driven metohds
- Limits are about $9x\sigma_{\text{SM}}$
- Results will improve with new mass rconstruction methods!

Review of LHC Results, Summer Student Program 02/08/2011

Intermediate Mass Channels

Higgs Boson Search in the WW \rightarrow IvIv

Key features :

- Not a search for a mass peak : Counting experiment only!
- Search carried out in 0, 1 and 2 (VBF) bins in numbers of jets
- ATLAS cut based only / CMS cut based and MVA
- Good control of the WW and top backgrounds is essential!

ATLAS MET distribution (not as easy as in the 2010 data!)

Higgs Boson Search in the WW \rightarrow IvIv

Key features :

- Not a search for a mass peak : Counting experiment only!
- Search carried out in various bins in numbers of jets
- ATLAS cut based only / CMS cut based and MVA
- Good control of the WW and top backgrounds is essential!
- Use of spin correlations is essential for the analysis and to define control regions...

Higgs Boson Search in the WW \rightarrow IvIv

Key features :

- Not a search for a mass peak : Counting experiment only!
- Search carried out in various bins in numbers of jets
- ATLAS cut based only / CMS cut based and MVA
- Good control of the WW and top backgrounds is essential!
- Use of spin correlations is essential for the analysis and to define control regions...

Slight Excess Observed

Higgs Boson Search in the WW→IvIv

Key features :

- Not a search for a mass peak : Counting experiment only!
- Search carried out in various bins in numbers of jets (CMS also VBF)
- ATLAS cut based only / CMS cut based and MVA
- Good control of the WW and top backgrounds is essential!
- Use of spin correlations is essential for the analysis and to define control regions...

Higgs Boson Search in the WW→IvIv

Key features :

- Not a search for a mass peak : Counting experiment only!
- Search carried out in various bins in numbers of jets (CMS also VBF)
- ATLAS cut based only / CMS cut based and MVA
- Good control of the WW and top backgrounds is essential!
- Use of spin correlations is essential for the analysis and to define control regions...

Higgs Boson Search in the ZZ^(*)→4I "Golden Channel"

- Difference with the cross section : one Z allowed to be off-mass shell ($m_H < 180 \text{ GeV}$)
- p_{T} thresholds lowered (7 GeV) for ATLAS
- Main Background ZZ normalized in the Monte Carlo (checked in the ZZ Cross Section)
- Other backgrounds (Zbb and top) data driven (but small)

Review of LHC Results, Summer Student Program 02/08/2011

Higgs Boson Search in the $ZZ^{(*)} \rightarrow 4I$

- Difference with the cross section : one Z allowed to be off-mass shell ($m_H < 180 \text{ GeV}$)
- p_{T} thresholds lowered (7 GeV) for ATLAS
- Main Background ZZ normalized in the Monte Carlo (checked in the ZZ Cross Section)
- Other backgrounds (Zbb and top) data driven (but small)

High Mass Channels

Higgs Boson Search in the WW \rightarrow Ivqq (ATLAS only)

- Largest event yield channel
- Also large backgrounds
- Reconstructed invariant mass constraint M_{Iv} = m_W Good relative mass resolution
- Background estimated from a fit model (side bands)

Review of LHC Results, Summer Student Program 02/08/2011

Higgs Boson Search in the WW \rightarrow Ivqq (ATLAS only)

- Largest event yield channel
- Also large backgrounds
- Reconstructed invariant mass constraint M_{Iv} = m_W Good relative mass resolution
- Background estimated from a fit model (side bands)

Higgs Boson Search in the ZZ \rightarrow IIvv, IIqq, IIbb

Key features of these analyses :

- $\mathsf{ll} v v$ almost no mass resolution important normalization of backgrounds

Higgs Boson Search in the ZZ \rightarrow IIvv, IIqq, IIbb

Key features of these analyses :

- IIvv almost no mass resolution important normalization of backgrounds
- llqq Control :
 - Analyses in 0, 1 and 2 b-tag categories (control of b-tag efficiencies)
 - Control of background shape

Review of LHC Results, Summer Student Program 02/08/2011

Higgs Boson Search in the ZZ \rightarrow IIvv, IIqq, IIbb

Key features of these analyses :

- IIvv almost no mass resolution important normalization of backgrounds
- llqq Control :
 - Analyses in 0, 1 and 2 b-tag categories (control of b-tag efficiencies)
 - Control of background shape

Combination

Review of LHC Results, Summer Student Program 02/08/2011

The Complete ATLAS Picture

The Complete CMS Picture

Review of LHC Results, Summer Student Program 02/08/2011

The Higgs Search Exclusion before without LHC

Review of LHC Results, Summer Student Program 02/08/2011

The ATLAS and CMS Combinations

A new landscape of Higgs Exclusion has Emerged!

The ATLAS and CMS Combinations

A new landscape of Higgs Exclusion has Emerged!

Another view (LEP style)

The ATLAS and CMS Combinations

A new landscape of Higgs Exclusion has Emerged!

Yet another perspective...

Closing in very rapidly in the allowed Higgs mass domain...

Review of LHC Results, Summer Student Program 02/08/2011

Are there any Hints Anywhere to be Seen ?

In ATLAS...

Estimator for a discovery : Probability for a background only experiment to be more signal-like than observed!

Beware of the trial factor (here 2.8s boils down to ~10% - factor of ~O(40)) !

Review of LHC Results, Summer Student Program 02/08/2011

Are there any Hints Anywhere to be Seen ?

In ATLAS...

Estimator for a discovery : Probability for a background only experiment to be more signal-like than observed!

Beware of the trial factor (here 3.1s at ~120 GeV but 3 peaks) !

Are there any Hints Anywhere to be Seen ?

In ATLAS and CMS together (but not combined)

Review of LHC Results, Summer Student Program 02/08/2011

Lessons from Latest LHC results

Outlook from Theory (D. Gross) - EPS -I.- The Standard Theory (EW and QCD) is unbelievably successfull* 2.- Rapidly closing in on the Higgs** (Tantalizing hints in 120-150 GeV range)

3.- Colored sparticles are not around the corner

4.- No sign of (easily discoverable) new physics

* At LHC NNLO calculations and the entire NLO ME/PS toolkit are now mature and have proven to work beautifully.

** The Landscape of Higgs search exclusions has drastically changed

Apologies for the very large number of subjects that have not been shown in this talk, there are a lot!

It has been a wonderful year, many thanks and congratulations to the LHC! Bonnes fetes de Geneve...

Statistical Combination Methods

Combination methods and (RooStats) code are the same as those used for the 2010 paper and are the official LHC-HCG tools

Based on the profile likelihood (PL) estimator :

	Test statistic	Profiled?	Test statistic sampling
LEP	$q_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu, ilde{ heta})}{\mathcal{L}(data 0, ilde{ heta})}$	no	Bayesian-frequentist hybrid
Tevatron	$egin{array}{ll} q_{\mu} &=& -2\lnrac{\mathcal{L}(data \mu,\hat{ heta}_{\mu})}{\mathcal{L}(data 0,\hat{ heta}_{0})} \end{array}$	yes	Bayesian-frequentist hybrid
LHC	$q_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu,\hat{ heta}_{\mu})}{\mathcal{L}(data \hat{\mu},\hat{ heta})}$	yes $(0 \le \hat{\mu} \le \mu)$	frequentist

Profiling allows to fully take advantage of the constraints on nuisance paramters

The Unconditional Ensemble

$$\mathcal{L}(\text{data} | \mu, \theta) = \text{Poisson}(\text{data} | \mu \cdot s(\theta) + b(\theta)) \cdot p(\tilde{\theta} | \theta)$$

Signal region main measurement

Control region auxiliary measurement

To account in a fully frequentist fashion the systematic uncertainties :

- The nuisance parameter $\hat{\theta}$ is fixed for generation to default measured value $\hat{\theta}_0$ - Fitted $\hat{\hat{\theta}}, \hat{\hat{\theta}}$ in toys

- The auxiliary measurement $\, heta\,$ is randomized

Related Lectures

Essentially all are, but in particular...

- Concepts in particle physics (J.-P. Derendinger)
- Notions of the Standard Model (R. Godbole)
- Notions of Particle detectors (R. Werner)
- Notions of Experimental High Energy Physics trigger (B. Dahmes)
- Notions of Experimental High Energy Physics object reconstruction (J. Boyd)
- Concepts in Statistical analysis (G. Cowan)
- Standard Model and Higgs Physics at Hadron Colliders (P. Mattig)

Most results already presented in this Lecture – Different prospective

Higgs Boson Search with tau Leptons in the MSSM

Different analysis strategy : Combination of H[±] and (b) $\Phi^0 \rightarrow$ (b) $\tau^+ \tau^-$

Already probing below the interesting $\tan\beta^{30}$ region over wide mass range!

CMS-PAS-HIG-11-001 Doubly Charged Higgs

- extending Standard Model adding scalar triplet (motivated by Seesaw mechanism for neutrino masses). Leads to a doubly charged Higgs H^{±±}.

- Use di-lepton $H^{\pm\pm}$ decay topologies in four or three leptons.
- Look for SS di-lepton resonances.

Normal Hierarchy / Inverse Hierarchy / Degenerate State

Φ*

đ

Ζ⁰/γ

Limits comparable or better than previous experiments

67/71

ATLAS-CONF-2011-020

Search for a light CP-odd Higgs boson in the $\mu^+\mu^-$ Final State

- NMSSM : additional singlet complex field leads to 1 additional CP-even and one CP-odd Higgs In the low mass region (below 2m_b) lightest CP-even Higgs evades LEP limits this mass region is referred to as ideal Higgs scenario.

Search performed in the [6-9] and [11-12] mass range (avoiding Y resonances 1S, 2S and 3S due to uncertainties on their production rates).

Simple selection of two isolated muons p_T> 4 GeV

 $a_1 = \cos \theta_A a_{MSSM} + \sin \theta_A a_S$

ATLAS-CONF-2011-020

Search for a light CP-odd Higgs boson in the $\mu^+\mu^-$ Final State

- NMSSM : additional singlet complex field leads to 1 additional CP-even and one CP-odd Higgs In the low mass region (below 2m_b) lightest CP-even Higgs evades LEP limits this mass region is referred to as ideal Higgs scenario.

Search performed in the [6-9] and [11-12] mass range (avoiding Y resonances 1S, 2S and 3S due to uncertainties on their production rates).

Simple selection of two isolated muons $p_T > 4$ GeV

 $a_1 = \cos \theta_A a_{MSSM} + \sin \theta_A a_S$

