Physics and Detector simulation and MuCol WP2 meeting

Detector concept at 10 TeV: **Christmas version**

PAOLO ANDREETTO¹, MASSIMO CASARSA², ALESSIO GIANELLE¹, DONATELLA LUCCHESI^{1,3,4}, LORENZO SESTINI¹, DAVIDE ZULIANI^{1,3}

¹INFN PADOVA, ²INFN TRIESTE, ³UNIVERSITÀ DI PADOVA, ⁴CERN

INFŃ

Istituto Nazionale di Fisica Nucleare

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

PADOVA - 19/12/2023

*FOR INFO: DAVIDE.ZULIANI@CERN.CH

Introduction

- So far:
 - Started from CLIC detector concept
 - Revised IR and VTX detector with the insertion of nozzles
 - BIB studied at 1.5 TeV from MARS simulation

- MDI people are working on both <u>3</u> and <u>10</u> TeV BIB
- <u>Effort</u> by Federico on developing "a la ATLAS" detector

Today: first steps towards implementation of 10 TeV "a la CLIC" detector

• The main task of the WP2 2.1 is the design of the detector concept for 3 and 10 TeV Muon Collider

Università degli Studi di Padova

- When designing a detector, we must first consider the physics that we want to study
- We have found 3 physics cases (as defined in the IMCC interim report):
 - "Low" energy physics processes (EW, Higgs production) ~ hundreds of GeVs
 - "High energy physics processes (New Physics, resonance production) ~ order of TeVs • Unconventional signatures (long-lived particles, disappearing tracks, ...)

DAVIDE ZULIANI

DETECTOR CONCEPT AT 10 TEV: CHRISTMAS VERSION

Starting from the physics case

Initial (preparatory) studies

- Few studies have been done to properly understand the requirements of a 10 TeV detector
 - Track resolution as a function of magnetic field and tracker dimension

DAVIDE ZULIANI

 Calorimeters depth to contain electromagnetic and hadronic showers

General ideas behind the concept

- Therefore, the following ideas are considered to design the detector properly:
 - Switch to a 5 T magnetic field (seems reasonable after discussion with magnet experts)
 - Increase tracker dimension
 - Increase the depth of ECAL and HCAL, to improve shower containment
- This would pose a question: where to place the solenoid? In between the calorimeters!

- What doesn't change (yet)
 - Nozzles
 - L* (kept at 6 m)
 - Placement and number of tracker layers
 - Muon system

 $y \, [
m cm]$

DAVIDE ZULIANI

DETECTOR CONCEPT AT 10 TEV: CHRISTMAS VERSION

The MuColl_v0_10TeV detector

5 T solenoid in between calorimeters: magnetic flux closed by iron in HCAL

Removed HCAL ring (not necessary)

DAVIDE ZULIANI

Increased dimension of tracker (1500 \rightarrow 1700 mm)

Increased dimension of calorimeters:

ECAL (40 \rightarrow 51 layers)

HCAL (60 \rightarrow 70 layers)

DETECTOR CONCEPT AT 10 TEV: CHRISTMAS VERSION

The MuColl_v0_10TeV detector

DAVIDE ZULIANI

DETECTOR CONCEPT AT 10 TEV: CHRISTMAS VERSION

MuColl_v0_10TeV

First test

The pipeline to study the BIB occupancy is the usual one

• Unfortunately, the INFN cloud is in maintenance since yesterday, therefore no plots today :(

DAVIDE ZULIANI

• This is a very preliminary plot showing the occupancy in the tracking system of 1/57 of 1 BIB event at 10 TeV

Obtained with standard 3 TeV detector (MuColl_v1)

Time range chosen: [-0.5,15] ns

If multiplied by 57, comparable numbers with previous studies are obtained

Conclusions

- The first "a la CLIC" configuration for a 10 TeV Muon Collider has been shown today Created a <u>branch</u> in the official MuColl repository
- There is a lot of work in the incoming weeks:
 - Study detector performance without BIB using particle guns, to understand: 1.
 - Detector coverage
 - **Optimal efficiencies**
 - 2. Same as 1. but with BIB
 - 3. Consider a couple of benchmark cases and study the physics reach

Also, fundamental to have optimised nozzles for 10 TeV configuration

DAVIDE ZULIANI

DESCRIPTION OF THE ACTUAL DETECTOR

