"HIGHEST"

High-Temperature High-Gradient Superconductors

Karlsruher Institut für Technologie

2024 – 02 – 31 Bellaterra

Agenda for today

- 9:30 AM → 9:50 AM Welcome and introduction
 Speaker: Dr Joffre Gutierrez Royo (ICMAB CSIC)
- 9:50 AM → 10:10 AM Status of experiments at SLAC and new ideas Speaker: Jessica Golm (CERN)
- 10:10 AM → 10:30 AM Discussion on next steps of the collaboration
- 10:30 AM \rightarrow 11:30 AM Laboratory visit
- 13:00 → 14:30 Lunch
- 15:00 → 16:00 REBCO Coatings for High-Gradient RF Applications Speaker: Sergio Calatroni (CERN)

- **1 Quick project overview**
- 2 D-Nano 40 mm-wide CC tape "batch #1" initial results
- 3 Possibility of measuring high-RF powers in CCs lab samples

1 – Quick project overview

- 2 D-Nano 40 mm-wide CC tape "batch #1" initial results
- **3 Possibility of measuring high-RF powers in CCs lab samples**

HIGHEST Background and aim

Sustainability of particle accelerators will benefit from a wider use of HTS technology.

• High-Temperature Superconductors (HTS) can fill the operating window between normal conducting RF and traditional low-temperature superconducting RF for high power applications

• Investment in RF hardware and operational energy costs could be lowered in comparison to present-day technologies by operating at liquid-nitrogen temperature

We have already demonstrated:

- Successfully applying 2D HTS tapes in 3D geometries
- Measuring a higher quality factor of these HTS coated RF cavities at low power

Aim:

• We aim at demonstrating that HTS can be used for high power RF applications

• We want to develop and optimize a 3D coating technology and demonstrate its scalability to make practical RF high power devices

WP3 plan and risk mitigation

WP3 (CSIC-ICMAB)			
2D coating on discs and segmented cavities for benchmarking		D1	
Measurement of superconducting properties of 3D HTS coatings			D2
SLAC supporting partner			
RF high power characterization of 3D coated HTS discs in their mushroom cavity			

Risk	Mitigation
Segmented test cavity delayed	HTS optimization studies to be performed with older "RADES" cavities
Quality of 3D coatings on discs	Measurement of superconducting (non-RF) properties at ICMAB will help in optimization work
High power characterization at SLAC delayed	Preliminary low-power characterization is possible with standard laboratory devices

WP3 plan and risk mitigation

WP3 (CSIC-ICMAB)		
2D coating on discs and segmented cavities for benchmarking	D1	
Measurement of superconducting properties of 3D HTS coatings		D2
SLAC supporting partner		
RF high power characterization of 3D coated HTS discs in their mushroom cavity		

Risk	Mitigation
Segmented test cavity delayed	HTS optimization studies to be performed with older "RADES" cavities
Quality of 3D coatings on discs	Measurement of superconducting (non-RF) properties at ICMAB will help in optimization work
High power characterization at SLAC delayed	Preliminary low-power characterization is possible with standard laboratory devices

1 – Quick project overview

2 – D-Nano 40 mm-wide CC tape "batch #1" initial results

3 – Possibility of measuring high-RF powers in CCs lab samples

3D HTS coatings will benefit from having wider tapes

40mm-wide D-Nano tape from batch #1 shows rather low J_c values

3D HTS coatings will benefit from having wider tapes

Main signal coming from the RABiTS substrate

40mm-wide D-Nano tape from batch #1 shows rather low J_c values, particularly at liquid nitrogen temperatures.

Z_s characterization remains to be performed

- **1 Quick project overview**
- 2 D-Nano 40 mm-wide CC tape "batch #1" initial results
- 3 Possibility of measuring high-RF powers in CCs lab samples

Initial study shows that CCs have a weak dependence with the RF power

P. Krkotic, et al. Supercond. Sci. Technol. 35 (2022)

Far from high-gradient accelerator requirements $H_{Rf} = 575.000 \text{ A/m}$

Initial study shows that CCs have a weak dependence with the RF power

P. Krkotic, et al. Supercond. Sci. Technol. 35 (2022)

Higher Rf powers, in the order of high-gradient accelerators requirements, are achievable using a (μ -)stripe resonator technique There is very limited and "old" data on REBCO RF-power dependence

Far from high-gradient accelerator requirements

 $H_{Rf} = 575.000 \text{ A/m}$

Transferring a REBCO CC to a flexible low-loss dielectric substrate

To use strip resonator techniques we have to get rid of the metallic (Ag & Cu) substrate of our REBCO samples

1st - Delamination

Transferring a REBCO CC to a flexible low-loss dielectric substrate

1st - Delamination

2nd – Transfer to 20 μm thick low-RF loss Kapton (<1 dB/m loss @6 GHz)

Transferring a REBCO CC to a flexible low-loss dielectric substrate

3rd – Etching of Ag & Cu

1st - Delamination

2nd – Transfer to 20 μm thick low-RF loss Kapton (<1 dB/m loss @6 GHz)

This allows to "print" REBCO circuits compatible with a (μ -)stripe resonator geometry to study $Z_s(H,T,H_{RF,}f)$