

RF mushroom cavity design for High Temperature Superconductor (HTS) material test

<u>P. Martinez-Reviriego</u>¹, J. Golm³, W. Wuensch³, D. Esperante^{1,2}, B. Gimeno¹, C. Blanch¹, N. Fuster-Martínez¹, D. Gonzalez-Iglesias¹, P. Martín-Luna¹, E. Martinez¹, A. Menendez¹ and J. Fuster¹

1 Instituto de Física Corpuscular (IFIC), CSIC-University of Valencia, Parque Científico, C/ Catedrático José Beltrán, 2 46980 Paterna (Valencia)

2 Electronics Engineering Department, University of València, 46100 Burjassot, Spain

3 CERN, 01631 Meyrin, Switzerland

HIGHEST MEETING 31 JANUARY 2024, BARCELONA, SPAIN

Outline

□ Introduction

□ Theoretical framework

Preliminary studies

Conclusions

SLAC cavity

 TE_{320} -like mode in a "semispherical" cavity

Test properties: • No Electric field

- High Magnetic field
- No electric current on the edge

Test samples under high magnetic fields:

- High-Gradient material
- High Temperature
 Superconductor₃

3 (in)

SLAC cavity

- Radius = 0.95 in ~ 24 mm 0 HTS sample radius = 10 mm
- Same set up -> Same RF frequency Ο

1.5

3 (in)

 TE_{320} -like mode in a "semispherical" cavity

Test properties: • No Electric field

- High Magnetic field Ο
- No electric current on Ο the edge

Test samples under high magnetic fields:

- High-Gradient material
- High Temperature Ο Superconductor₄

Solution approaches

Challenge:

- $\circ \text{ Radius} = 0.95 \text{ in} \sim 24 \text{ mm}$ HTS sample radius = 10 mm
- Same set up -> Same RF frequency

Solutions:

Resonant cavity: analytical study

 TE_{320} -like mode in a "semispherical" cavity

 $|E_{\phi}|$

$$TE$$
, $\frac{\partial}{\partial \phi} = 0$ (axial symmetry)

$$E_{\phi}(r,\theta) = E_0 j_n(k_{mn}r) \frac{d}{d\theta} L_n^0(\cos\theta)$$

$$\omega_{m,n} = ck_{mn} = c\left(\frac{r_{mn}}{R}\right)$$

 $\vec{H} = H_r \hat{r} + H_\theta \hat{\theta}$ $\vec{E} = E_\phi \hat{\phi}$

 $L_n^0(x)$: Legendre polynomial

 $j_n(r)$: spherical Bessel function

 r_{mn} : n-th zero of the m-th spherical Bessel function

$$j_n(r) = \sqrt{\frac{\pi}{2r}} J_{n+\frac{1}{2}}(r)$$

$$E_{\phi} = E_{0}j_{2}(k_{32}r)L_{2}^{0}(\cos\theta)$$
Zeros of $j_{2}(x)$
5.76346
9.09501
12.3229
15.5146

Solution I

Solution I

8

Dielectric resonant cavity

Conclusions

RF Mushroom cavity update for HTS measurements at SLAC set up.

□ Smaller cavity with dielectric:

 $\circ~$ More freedom in the design.

 $\circ~$ Need of fabrication

□ Same cavity with dielectric and higher order mode:

 $\circ~$ No need of fabrication.

• More constraints to the design

Dielectric resonant cavity I

 $|\vec{H}|$

 $\left| \vec{E} \right|$

Dielectric resonant cavity II

 TE_{320} -like mode in a "semispherical" cavity