INSTRUMENTATION AT THE LHC

A CLOSER LOOK TO THE SILICON DETECTOR SYSTEMS

Manfred Krammer

Austrian Academy of Sciences Institute of High Energy Physics of the Austrian Academy of Sciences

The 8th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors at Academia Sinica, Taipei, December 5-8, 2011

25 Years ago

In mid/late 1980 the project of a high luminosity (> 10^{34} cm⁻²s⁻¹) hadron collider ($\sqrt{s}=16$ TeV) at CERN took shape. LHC was planned as a competitor to the SSC (40 TeV and 10^{33} cm⁻²s⁻¹) in the US (but earlier!!!).

Detector concepts for the high luminosity LHC:

- Focus on calorimetry and muon detection
- Widespread believe that vertexing and full tracking not possible at these luminosities.

Typical detector proposals:

- Magnetic Iron "µball" + Calorimeters + TRD
- Beam dump type muon spectrometer

Detector Concepts* (1988)

Beam Dump type Experiment:

Detector Concepts (1988)

However, in the same conference (Como 1988) some foresighted colleagues proposed already large tracker based on silicon microstrips for SSC and LHC experiments:

NIM A279 (1989) 223, H.F.-W. Sadrozinski, A. Seiden and A.J. Weinstein

40 m² of silicon, σ_{pt}/p_t =8% at 1 TeV

Late 1980 till 2011

Huge development in the field of silicon detectors, electronics, connectivity, mechanics, cooling, etc.

- LEP Experiments first application in collider experiment 1989 2000
- CDF and DO first application at a hadron collider (1985*) 1992 2011
 * no silicon detectors initially

Silicon detectors became indispensable, they opened new fields of research (e.g. heavy flavour physics) and the size became larger and larger!

HSTD8 - December 7, 2011

1980 to 2011

But also number of physicists and institutes involved in silicon tracking systems grew:

HSTD8 - December 7, 2011

OAW Austrian Academy

HSTD8 - December 7, 2011

ATLAS PIXEL

96.8% of the detector active in data taking (The percentage of disabled modules only 2.1% up to 3.2% in 3 years of operations)

Readout chip measures pulse height by Time-over-Threshold

 \rightarrow used for dE/dx measurement.

Larges Pixel detector at LHC!

3 barrel layers: 1456 modules 3 disks per end-cap: 288 modules **80M readout channels** Innermost layer at radius 50,5 mm

Evaporative C_3F_8 cooling

ATLAS SCT

ATLAS Performance

Excellent performance of ATLAS Pixel and Strip Detector

More details in talks by Cecile Lapoire (Pixel) and Dave Robinson (SCT).

HSTD8 - December 7, 2011

ALICE

ALICE a dedicated heavy ion experiment

Lower luminosity 10²⁷cm⁻²s⁻¹ during Pb-Pb collisions, but charged particle multiplicities of up to 8000 per unit of rapidity.

ALICE Inner Tracking System:

Largest TPC in the world: 5 m length, radius from 0.85 – 2.5 m, 88 m³ gas volume

+ silicon system inside

ALICE Inner Tracking System

<u>Strip</u>

Drift

Pixel

3 different silicon detector technologies:

- Hybrid Silicon Pixel Detector (SPD)
- Silicon Drift Detector (SDD)
- Double Sided Strip Detector (SSD)

										The second se	and the second designed and th	
Layer	Det.	Radius (cm)	Length (cm)	Surface (m2)	Chan.	Spatial precision (mm)		Cell (µm2)	Max occupancy central PbPb	Material Budget	Power dissipation (W)	
						rφ	z		(%)	(% X/X ₀)	barrel	end-cap
1	SPD	3.9	28.2	0.21	9.8M	12	100	50x425	2.1	1.14	1.35k	30
2		7.6	28.2						0.6	1.14		
3	SDD	15.0	44.4	1.31	133 K	35	25	202x294	2.5	1.13	1.06k	1.75k
4		23.9	59.4						1.0	1.26		
5	SSD	38.0	86.2	5.0	2.6M	20	830	95x40000	4.0	0.83	850	1.15k
6		43.0	97.8						3.3	0.86		

Operation 2010/11 not without problems:

SPD: 1,8% low eff. or dead channels, cooling problems effecting ~30% of modules SDD: 1,5% dead + 0,7% noisy channels, 6% modules out of aquisition SSD: 1,5% dead or noisy channels, 8% modules out of aguisition

R. Santoro, Vertex2011

HSTD8 - December 7, 2011

ALICE Silicon Drift Detector

Voltage divider Central Cathode at-HV Anodes <u>k</u>_d(e⁻) ←HV supply v_d(e⁻) ← LV supply Commands Trigger \rightarrow Data

Challenging calibration: interplay between alignment, drift velocity and time-zero calibration.

Alignment, before and after drift velocity correction:

ALICE Particle ID

4 out of 6 silicon layers with analogue information (SDD and SSD)

Results for particle identification in p-p and Pb-Pb data

ITS standalone tracks

Hadron separation below 100 MeV/c ← Low momentum cutoff of 100 MeV

Good pions / kaons separation up to 0.5 GeV/c

Good pions and protons separation up to 1 GeV/c

HSTD8 - December 7, 2011

D meson reconstruction in PbPb

Pb – **Pb collisions (2010)** 2.76 TeV/nucleon (≈ 30 M events MB)

More details in talk by Vito Manzari.

Prove of the ITS performance:

Find charm decays in Pb-Pb collisions (crucial is the ITS impact parameter resolution).

e.g. D0:

LHCb experiment dedicated to heavy flavour physics

Inner Tracker see talk by Greig Cowan.

During stable beams closest silicon 7 mm from the beam.

VELO Modules

21 modules per half (r and Φ sensor per module) n-n sensors (300 µm, pitch 40 µm – 100 µm) Operated in secondary vacuum (separated from LHC vacuum by 300 µm foil)

Evaporative CO_2 cooling at -30 C \rightarrow no problems during operation.

Quasi circular sensors with inner opening:

76000

78000

X

ICb Preliminary

of Sciences

Mean (∆PVx_{A.C}) [µm

74000

Borghi, Vertex2011 ഗ് 80000 Run Number

Stability of two half alignment ± 5 μ m/ \pm 2 μ m in x/y Method: reconstruct primary vertex with the two halfs

Alignment and impact parameter resolution

Impact parameter resolution for high p_t tracks 13 µm.

MC predicts 11µm

Discrepancy is under investigation (summer 2011) Possible reasons are material description, alignment effects.

Time Resolution

Time resolution important, e.g. to measure $B_s^0 - \overline{B}_s^0$ mixing frequency. **Time resolution obtained from promt J/\psi = 50 fs !**

More details in talk by Paula Collins.

First experiment with full Silicon tracker system.

Largest Silicon Detector ever built.

+ Silicon strip sensors inside the preshower detector Talk by Chia-Ming Kuo and poster by Kai-Yi Kao.

CMS Tracker

Pixel detector:

1 m² detector area 1440 pixel modules 66 million pixels

Strip detector:

~200 m² of silicon sensors 24,244 single silicon sensors 15,148 modules 9,600,000 strips = electronics channels

75,000 read out chips (APV25) 25,000,000 Wire bonds

CMS Strip Detector

15148 modules in 27 mechanically different geometries – real mass production.

Examples for end cap geometries:

Single sided sensors:

p⁺ on n thickness 320 μm and 500 μm two different wafer resistivities

Stereo modules with sensors back to back.

Cooling C_6F_{14} at present set to 4°C. Some problems with leak rate (5 out of 90 cooling loops shut down)

Status: 2.2% dead channels

CMS Pixel Detector

Pixel is inserted on rails. \rightarrow can be extracted for maintenance (done winter 2010)

Pixel status: 96.9% functional ROCs (15324 from a total of 15840)

Frequent firmware updates necessary.

HSTD8 - December 7, 2011

Knowlege of material distribution of the tracker is crucial for physics analysis. Use counting of photon conversions and nuclear interactions to probe material.

Knowlege of material distribution of the tracker is crucial for physics analysis. Use counting of photon conversions and nuclear interactions to probe material.

Good agreement within 10%!

Resolution on transverse momentum measured using J/ ψ mass line-shape. Tracks from J/ ψ have on average a momentum of a few GeV. At this momenta the inner tracker dominates the momentum measurement.

Sensitive to:

- Knowledge of the tracker material
- Alignment
- B field
- Reconstruction algorithms

In general good agreement with MC (~5%, some deviation in the transition region of barrel to end cap). More results in talk by Francesco Palmonari.

Tracking at High Pile Up

Event with 20 vertices:

~ 10 cm

And all vertices nicely reconstructed......

Last but not least.....TOTEM

TOTEM is dedicated to the measurement of the total cross section, elastic scattering and diffraction dissociation at the LHC.

Cathode strip chambers at 10.5 m, Triple GEMs at 14 m

AND silicon sensors in Roman Pots at 147 m and 220 m from the interaction point (IP5 CMS).

TOTEM Edgeless Sensors

240 edgeless sensors 122880 readout channels Active strips only 50 µm from edge

Pitch adapter on sensor

TOTEM

Closest approach of the system foreseen: 10σ of the beam.

of Sciences

Summary

Experiment	Detector	Silicon Area m²	Nr. of channels Millions
ATLAS	SCT	61	6,27
	Pixel	2,2	80
ALICE	SPD	0,21	9,8
	SDD	1,31	0,133
	SSD	5	2,6
LHCb	VELO	0,0055	0,172
	TT	8,2	0,143
	IT	4,2	0,129
CMS	Pixel	1	66
	SST	200	9,6
	Preshower	16	0,137
ТОТЕМ		0,294	0,123
LHC total		300 m²	175 Million

Particle Flow

Reconstruct all particles and combine the information from tracking with the measurements in the electromagnetic and hadron calorimeter \rightarrow improve measurement of Jet energy, MET, Tau identification.

Particles in jets	Fraction of energy in jets	Detectors	Single particle resolution (CMS)	
Charged Hadrons	65 %	Silicon Tracker	σ _{pt} /p _t ~ 1%	
Photons	25 %	Elm. calorimeter	σ _E /E ~ 2,8%/√E	
Neutral Hadrons	10 %	Elm. and had. calorimeter	σ _E /E ~ 100%/√E	

Jet energy resolution (MC):

MET distribution in W \rightarrow ev candidate events (Data and MC):

Silicon trackers improve Jet, Tau and Missing E_t measurements as well !

Conclusion

• All LHC experiments have installed large to very large silicon tracking systems - probably larger and more sophisticated than most optimistic physicists have dreamed 25 years ago!

 Silicon systems operating very succesfull and stable with low number of dead channels – except various cooling problems – was this component underestimated?

• Physics performance reaching design figures and even better – see following talks.

THANK YOU FOR YOUR ATTENTION !