A MAPS detector application in a Young-Feynman interference experiment with single electrons

F. Giorgi(1), S. Frabboni(3), A. Gabrielli(1,2), G.C. Gazzadi(3), G. Matteucci(2), G. Pozzi(2), N. Semprini(1,2), M. Villa(1,2), A. Zoccoli(1,2)

(1) INFN – Bologna, Italy
(2) Physics Department – University of Bologna, Italy
(3) CNR-Institute of Nanoscience-S3 and University of Modena and Reggio Emilia, Italy
Outline

• Young’s double slit interference experiment
• Historical notes on electron interference
• Setup of a quantum experiment with single electrons
• The digital sensor
• Measures and results
• Conclusions
Young’s double slit experiment

LIGHT
- Monochromatic and coherent source
- Two slits at distance \(d \) (primary wave split into 2 sources of coherent waves)
- Detection on screen at distance \(D \gg d \)
- Fringes at multiples of \(\theta = \frac{\lambda}{d} \)

PARTICLES (i.e. electrons)
- Mono-energetic and coherent (small) source

\[\lambda_{\text{De Broglie}} @ 60 \text{ KeV} \sim 5 \cdot 10^{-12} \text{ m} \quad (0.05 \text{ A}) \]
\(~ 1/20 \text{ Hydrogen’s Bohr diameter}~\)

R. Feynmann: “We should say right away that you should not try to set up this experiment”
Lecture on Physics, vol 3. (1963)
Young’s double slit experiment

LIGHT
- Monochromatic and coherent source
- Two slits at distance d (primary wave split into 2 sources of coherent waves)
- Detection on screen at distance $D >> d$
- Fringes at multiples of $\theta = \lambda / d$

PARTICLES (i.e. electrons)
- Mono-energetic and coherent ($small$) source

$\lambda_{\text{De Broglie}} @ 60 \text{ KeV} \sim 5 \cdot 10^{-12} \text{ m} \ (0.05 \text{ A})$
($\sim 1/20$ Hydrogen’s Bohr diameter)

R. Feynmann: “We should say right away that you should not try to set up this experiment”
Lecture on Physics, vol 3. (1963)

Electron Diffraction at Multiple Slits on the American Journal of Physics (1974) 42, 4-11
Young’s double slit experiment

LIGHT

- Monochromatic and coherent source
- Two slits at distance d (primary wave split into 2 sources of coherent waves)
- Detection on screen at distance $D \gg d$
- Fringes at multiples of $\theta = \lambda / d$

PARTICLES (i.e. electrons)

- Mono-energetic and coherent (small) source

$$\lambda_{\text{De Broglie}} @ 60 \text{ KeV} \sim 5 \cdot 10^{-12} \text{ m} \ (0.05 \text{ A})$$

($\sim 1/20$ Hydrogen’s Bohr diameter)

R. Feynmann: “We should say right away that you should not try to set up this experiment”
Lecture on Physics, vol 3. (1963)

From *gedanken* to real, a step further

TEM Philips M400T

Thermo-ionic electron emitter

actual double slit mechanical stopper

HEP MAPS sensor

APSEL4D chip by SLIM5 (INFN)

Custom DAQ board

“Digital movie” shot @ 6000 fps → single counts AND Time-tagging
DAQ Boards

Back-end board

Vacuum connector

MAPS sensor
Nanometric Double Slit

FIB (Focuses Ion Beam) 30 keV Ga+ source. 10 pA beam. Carbon membrane with Au deposition (50-100nm thick).

SEM Image

Length: 1550nm.
Width: 100nm.
Distance: 450nm.

The MAPS sensor APSEL4D

Developed by the **INFN SLIM5** collaboration: R&D for HEP collider experiments.

- **MAPS**: Monolithic Active Pixel Sensor CMOS ST.13 μm technology
- Thickness 300 μm, pitch 50x50 μm
- 4096 channels (32x128)
- ENC 75 e⁻
- S/N ~ 20 (MIP)
- Signal **discriminator** with extern. threshold
- **Binary hit** information.
- **Digital readout**:
 - Data Driven
 - **Sparsified** hit extraction
 - Time tagging down to 1 μs.
- Clock frequency 20-50 MHz
- **Efficiency** ~ 90% measured at CERN with 12-GeV proton beam.

Sparsified Digital Readout

Macro Pixels (MP) have dedicated lines
- 1 Fast OR
- 1 Latch enable
Macro Pixels (MP) have dedicated lines
- 1 Fast OR
- 1 Latch enable
Sparsified Digital Readout

Macro Pixels (MP) have dedicated lines
• 1 Fast OR
• 1 Latch enable

Pixel hit extraction
• 1 column at a time
• Only fired MP are inspected column by column
Sparsified Digital Readout

Macro Pixels (MP) have dedicated lines
- 1 Fast OR
- 1 Latch enable

Pixel hit extraction
- 1 column at a time
- Only fired MP are inspected column by column
Macro Pixels (MP) have dedicated lines

- 1 Fast OR
- 1 Latch enable

Pixel hit extraction

- 1 column at a time
- Only fired MP are inspected column by column
Sparsified Digital Readout

Macro Pixels (MP) have dedicated lines
- 1 Fast OR
- 1 Latch enable

Pixel hit extraction
- 1 column at a time
- Only fired MP are inspected column by column
Macro Pixels (MP) have dedicated lines
• 1 Fast OR
• 1 Latch enable

Pixel hit extraction
• 1 column at a time
• Only fired MP are inspected column by column
Sparsified Digital Readout

Macro Pixels (MP) have dedicated lines
• 1 Fast OR
• 1 Latch enable

Pixel hit extraction
• 1 column at a time
• Only fired MP are inspected column by column
Sparsified Digital Readout

Macro Pixels (MP) have dedicated lines
- 1 Fast OR
- 1 Latch enable

Pixel hit extraction
- 1 column at a time
- Only fired MP are inspected column by column
Sparsified Digital Readout

Macro Pixels (MP) have dedicated lines
- 1 Fast OR
- 1 Latch enable

Pixel hit extraction
- 1 column at a time
- Only fired MP are inspected column by column
Sparsified Digital Readout

Macro Pixels (MP) have dedicated lines
- 1 Fast OR
- 1 Latch enable

- Pixel hit extraction
 - 1 column at a time
 - Only fired MP are inspected column by column
 - Fired pixel in the active column are coded by sparsifier components
 - Hits converge on a common formatted output.
The Measures
System test: Carbon-grating diffraction

Grid sample pitch: 400 nm

40 keV electrons: $\lambda = \frac{h}{p} = 5.9 \text{ pm}$; $\theta \sim 10^{-5} \text{ rad}$

3 ms time resolution: 333 fps

High average number of electrons per frame

Peak distance: 13 pixels $\Rightarrow 0.65 \text{ mm}$
The single electron interference experiment results

• 40 keV electrons
• 165 μs time resolution: ~6000 fps
Vast majority of frames are empty (empty/hit ~ 70)
The edited movie

1st part: Both empty and single-electron frames are being played
2nd part: Empty frames are being skipped.
3rd part: Single electron frames are overlapped together

96k e\(^{-}\) recorded
~20 min. run

~80 e\(^{-}\)/s \(\Rightarrow\) 1500 km av. Distance (\(\beta\sim.5\))
Frame data analysis

Electron multiplicity in frames

- Zero-multiplicity (empty frames) \(\sim 7 \times 10^6 \)

Time distance between electrons

- Almost every electron was already “on tape” before the next one was emitted
Conclusions

• A Young-Feynmann experiment with a sub-micron double slit, a HEP pixel sensor and a Transmission Electron Microscope was setup.

• 40KeV Single electrons could be detected, time-tagged with a 165 µs time resolution and taped out one by one → For the 1st time the arrival time distribution (mean ~10 ms) has been reconstructed.

• The double slit interference pattern was build up off-line with a statistic of about 100k electrons that travelled at an average distance of ~1500 km between each other.
Thank you
Still image of the overlapped single electron frames