

CAU-PNU BSM Workshop @ Chung-Ang Univ., February 19, 2024

Nal crystals for particle detection

Pro

- High light output
 - 40,000 photons/MeV
 >60,000 photons/MeV?
- Easy to grow
 - Cheap
 - ✤ Large size
- The most widely used scintillator
- Mixture of low and high atomic numbers

Con

- Huge hygroscopic materials
- Contamination of natural Potassium

 ~ 3keV X-ray from ⁴⁰K
- No good identification of nuclear recoil

The first 32 inch diameter Nal(TI) crystal. Pictured from left to right are Dr. Swineh. Ed Jablon, Joe Knaus and Marko Sfilgoi.

Properties Fro	m Saint-Gobain
Density [g/cm³]	3.67
Melting point [K]	924
Thermal expansion coefficient	[C ⁻¹] 47.4 x 10 ⁻⁶
Cleavage plane	<100>
Hardness (Mho)	2
Hygroscopic	yes
Wavelength of emission max	[nm] 415
Refractive index @ emission r	nax. 1.85
Primary decay time [ns]	250
Light yield [photons/keVγ]	38
Temperature coefficient of lig	ht yield -0.3%C ⁻¹

Hyun Su Lee, Center for Underground Physics (CUP),

Nal(TI) for rare event searches : Dark Matter

Nal(TI) for rare event searches : Dark Matter

Annual modulation signal from DAMA/LIBRA

Annual modulation signal from DAMA/LIBRA

Although proving DAMA/LIBRA is main purpose of NaI(Tl)-based dark matter search experiments, **this talk** will focus on the **general dark sector particle searches** with NaI(Tl) crystals

COSINE collaboration

Hyun Su Lee, Center for Underground Physics (CUP), Institute for Basic Science (IBS)

COSINE-100 experiment (2016~2023)

- YangYang underground laboratory (Y2L)
- Started physics operation since September/2016
- Ended physics run March/2023
- Decommissioning for upgrade and moving to Yemilab
 - Plan to restart COSINE-100 upgrade by early 2024 at Yemilab

COSINE-100 data exposure

Stable operation Since Sep. 2016 for about 6.4 years

- ~95 % physics data
- ~94 % good quality data (6.0 years data)

Hyun Su Lee, Center for Underground Physics (CUP), Institute for Basic Science (IBS)

Detector background understanding

Dark matter search with spectral shape fit

Dark matter search with spectral shape fit

WIMP-¹²⁷I inelastic interaction

- Signal : 57.6 keV gamma + nuclear recoil
- 57.6 kev 1.7 years data
 - Search for energy 35 keV 85 keV

Bosonic super-WIMP (BSW)

Bosonic dark matter with mass 10 keV – 1 MeV

Boosted dark matter with extended energy (~10 MeV)

Hyun Su Lee, Center for Underground Physics (CUP), Institute for Basic Science (IBS)

Solar bosonic dark matter annual modulation

• Sun is the strong source of gamma

Conversion to dark sector bosonic particle is possible

Phys. Rev. D 107, 122004 (2023)

Ongoing works : Event selection update

• Multivariable machine learning training

Hyun Su Lee, Center for Underground Physics (CUP), Institute for Basic Science (IBS)

Ongoing works : Waveform simulation

-3.5

-3

-2.5

Meantime Parameter

- energy events (sub-keV)
- Simulation describe the data reasonably well
- Currently, the waveform simulation cross checked the trigger/selection efficiencies
- The waveform simulation will be used as signal sample of the multivariable analysis

-0.5

-1

-1.5

Ongoing works : Nonproportionality of NaI(TI) crystals

 Internal background of COSINE-100 + external sources Nonproportionality of gamma & x-rays

Nuclear Instruments and Methods in Physics Research Section A ,430, 2–3,(1999)

- Gamma & x-rays calibration updated
- Electron can have different nonproportionality in low energy
 - High energy nonproportionality

Ongoing works : Background modeling update

Ongoing works : Calibration of the nuclear recoils

- Update previous measurement with improved understanding of incident neutron energy and lowenergy event selection
 - Consistent with other group's measurements
- New measurement including the lowest energy point (3.8 keVnr)
 - Modified Lindhard model describe the measured data well
- Complete feature including detector's nonproportionality

Ongoing works : Dark matter sensitivities

Yemilab for new discoveries

 New underground laboratory in Korea is one of the most important milestone of the CUP/IBS – 10 years journey

Handeok iron mine, Jeongseon, Gangwon, Korea

***** Milestones :

데제규니

COSINE-100U @ Yemilab

Astropart. Phys. 141, 102709 (2022) (b)

- 5% gamma light yield increase
- 10% alpha quenching increase
 Will measure nuclear recoil quenching
- Pulse shape discrimination is significantly improved

Warehouse freezer at Yemilab

Shielding base for muon detector

To start COSINE-100U at Yemilab May/2024

Decommissioning of the COSINE-100 detector @ Y2L

Oct/10

Oct/12

Oct/5

Oct/16

Oct/30

Installation @ Yemilab

Y2L to Yemilab

- All COSINE-100 materials were delivered to Yemilab
- Shield installation is ongoing
- Preparing upgrade of NaI(TI) crystals

COSINE-100 Upgrade : New encapsulation

Center for Underground Physics

Hyun Su Lee,

COSINE-100U : Detector upgrade

COSINE-100U for high light yield

Mass : 8.26 kg

→ 7.19 kg

COSINE crystal-1

Polishing

Above ground measurement

Cover design

Hyun Su Lee,

COSINE-100U : Detector upgrade

Light yield @ 59.54 keV

NPE = Number of photoelectrons

energy [keV]

COSINE-100U schedule

	202	4-01		2024	4-02	2024	4-03		2024-04		2024-05	2024-06
Crystals				Assembling & Instal				Ţ				
Liquid Scintillator		PMT LS Prod	Install duction				Pouring LS	S T				
Lead Shield	Bottom		Side						Тор		Physics	operation!!
Electronics				Server, HVS, Monitoring		nitoring						
Muon detector				hol	der			F	PS insta	I		

- We already prove the high light yield crystal (C1,C2,C3 assembled)
- Production for other crystals are on the way
- Moving from Y2L to Yemilab was done and shielding was prepared
- We plan to start COSINE-100U in May/2024

Low-mass sensitivities for spin-dependent limit

WIMP-proton spin-dependent

Low mass search with Migdal

22 NPE/keV, 1 year operation (100% efficiency), 5 NPE threshold

- A world best sensitive detector for low-mass WIMP-proton spindependent interaction
- Feasibility test for the COSINE-200 & 1T experiments

Neutrino Elastic scattering Observation with Nal

~20 members, 5 institutes, since 2019

IBS, SNU, CAU, KAERI, Sejong

- NEON aim to observe coherent elastic neutrino-nucleus scattering (CEvNS) using reactor antielectron neutrino
- 16.6 kg high light yield (~24 photoelectrons/keV) Nal(Tl) crystals were deployed at tendon gallery (~24 m from reactor core) of Hanbit nuclear power plant
- Stable physics data acquisition **since April/2022**

NEON detector

• 16.6 kg Nal(TI) crystals immersed in 800 L liquid scintillator

NEON operation

- Reactor on data : 461 days
- Reactor off data : 144 days
- Total exposure ~ 10,000 kg days

The largest exposure between reactor CEvNS experiments

Background understanding

- Reasonable understanding of background contributions
- ~7 counts/kg/day/keV background level below 10 keV
 Comparable with CONUS experiment

Reactor on minus off modeling

Reactor is the most intense source of MeV energy γ

- Dark sector bosonic particle such as dark photon or axion-like particle (ALP) may produced with the SM photon interaction
- Reactor is the stringent source of MeV mass dark photon or ALP

Compton-like process can produce dark photon

ALP production & detection

PRL 124, 211804 (2020) & JHEP 03, 294 (2021)

Production	Detection	Coupling
Primakoff Process	Inverse Primakoff Decays to two photons	$g_{a\gamma\gamma}$
Compton-like scattering	Inverse Compton-like Decays to e ⁺ —e ⁻ pair Axio-electric process	g_{aee}
Nuclear de-excitation	Nuclear absorption	9 ann

ALP simulation

Sensitivity

Background levels were much smaller than 1 dru especially for energy above 1 MeV

Multiple hit events enhance sensitivities for photon coupling (can use LS as active target)

 NEON data will provide best direct search results for MeV mass ALP (both photon coupling and electron coupling)

Sensitivity

Background levels were much smaller than 1 dru especially for energy above 1 MeV

Multiple hit events enhance sensitivities for photon coupling (can use LS as active target)

 NEON data will provide best direct search results for MeV mass ALP (both photon coupling and electron coupling)

Dark photon production & decay to dark matters

Dark photon production & decay to dark matters

NEON sensitivity

Hyun Su Lee, Center for Underground Physics (CUP), Institute for Basic Science (IBS)

Summary

- COSINE-100 searched various dark matter candidates in wide energy ranges
- COSINE-100U and COSINE-200 have world competitive sensitivities for low-mass dark matter searches
- Reactor is the most intense MeV gamma source, therefore, the stringent source of MeV dark photon and ALP
- NEON can unveil unexplored parameter spaces for ALP and low-mass dark matter (dark photon)

Hyun Su Lee, Center for Underground Physics (CUP), Institute for Basic Science (IBS)

Global Nal(TI) efforts

Annual modulation signal from DAMA/LIBRA

Institute for Basic Science (IBS)

48

Model-independent annual modulation search

Hyun Su Lee, Center for Underground Physics (CUP), Institute for Basic Science (IBS)

Model-independent annual modulation search

Data Fit (1-6 keV)

Hyun Su Lee, Center for Underground Physics (CUP), Institute for Basic Science (IBS)

DAMA/LIBRA's method (induced modulation)

Importance of background understanding

Ongoing works : Waveform simulation

-3.5

-3

-2.5

Meantime Parameter

- Waveform simulation is developed to describe lowenergy events (sub-keV)
- Simulation describe the data reasonably well
- Currently, the waveform simulation cross checked the trigger/selection efficiencies
- The waveform simulation will be used as signal sample of the multivariable analysis

-0.5

-1

-1.5

COSINE-200 crystal development

Crystal ingots

Machining

Assemby

Hyun Su Lee,

Powder purification performance K.A. Shin et al., J. Rad. Nucl. Chem. 317, 1329 (2018)

K.A. Shin et al., JINST 15, C07031 (2020)

K.A. Shin et al., Front. Phys. 11, 1142849 (2023)

	K (ppb)	Pb (ppb)	U (ppb)	Th (ppb)
Initial Nal	248	19.0	<0.01	<0.01
Purified Nal	<16	0.4	<0.01	<0.01

We produced ~ 400 kg low-background NaI powder

(Maximum production rate ~ 100 kg/month)

Large crystal growing is going on 54

NEON Event rate (100-500keV) over time

