Simulation of Galaxy Density Profiles with Velocity-Dependent Self-Interaction

CAU HEP Workshop

THEP

Junho Kang

27 Dec 2023

Core - Cusp Problem

In the low energy collision, effective range theory allows us a modelindependent description for velocity-dependent cross-section. It is given by

$$\sigma_0 = \frac{4\pi}{k^2} \sin^2 \delta_0 \approx \frac{4\pi a^2}{1 + k^2 \left(a^2 - ar_e\right) + \frac{1}{4}a^2 r_e^2 k^4}$$

(k : momentum, δ_0 : phase shift, a : scattering length, r_e : effective range)

We consider special case $r_e = \frac{a}{2}$ in this work. Then we get an expression of the following form, $\sigma(v) = \sigma_0 \left(1 + \left(\frac{v}{w}\right)^2\right)^{-2}$

Implement of Dark Matter Simulation

Implement of Dark Matter Simulation

- N-body Simulation algorithm
 Direct N-body method:
 t ~ 0(N²)
 Barnes-Hut algorithm:
 t ~ 0(N log N) √
- Collision detection algorithm
 Direct N collision detection: t ~ 0(N²)
 Grid collision detection: t ~ 0(N²/nm) √

Simulation Setup

		CDM	v-indep SIDM	v-dep SIDM	
	$\frac{\sigma_0}{m}$	0cm ² /g	2.17cm ² /g	2.17cm ² /g	
	w	-	∞	180km/s	
				$\sigma(v) = \sigma_0 \left(1 + \left(\frac{u}{v}\right) \right)$	$\left(\frac{1}{v}\right)^2$
Disk radius:			00 kpc -		
Initial Density profile: $\rho \propto \frac{1}{r}$					
Initial Velocity:			5 kpc/Gyr & Random direction		
Total mass:			$2.5 \times 10^{12} M_{\odot}$		
Particle Number:			5000		
Unit time step:			0.01 Gyr		
Total simulation time:5 Gyr					

Simulation Results

References

- Marco Cirelli et al (2011). PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection. Journal of Cosmology and Astroparticle Physics, 2011(03), 051–051.
- Sean Tulin, & Hai-Bo Yu (2018). Dark matter self-interactions and small scale structure. Physics Reports, 730, 1–57.
- Xiaoyong Chu, Camilo Garcia-Cely, & Hitoshi Murayama (2020). A practical and consistent parametrization of dark matter self-interactions. Journal of Cosmology and Astroparticle Physics, 2020(06), 043–043.
- Marchesini, D et al (2002). Hα Rotation Curves: The Soft Core Question. The Astrophysical Journal, 575(2), 801–813.
- Yoo-Jin Kang, & Hyun Min Lee (2021). Effective theory for self-interacting dark matter and massive spin-2 mediators. Journal of Physics G: Nuclear and Particle Physics, 48(4), 045002.
- Moritz S. Fischer et al (2023). Cosmological and idealised simulations of dark matter haloes with velocity-dependent, rare and frequent self-interactions.